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Abstract. With the advancement of technology, an increasing amount of data is stored online, 

including substantial amounts of personal information. Especially in the financial industry, 

where large sums of money are often involved, protecting personal privacy is crucial. Federated 

learning, as a privacy-preserving distributed machine learning method, offers a solution to these 

challenges by enabling data privacy while addressing the difficulties of data sharing in the 

financial sector—issues that frequently impede innovation, risk management, and fraud 
detection. This paper delves into the principles of federated learning algorithms, exploring their 

mechanisms in detail. Besides, applications and case studies in applications such as financial 

fraud detection, supply chain financing prediction, and other financial services are examined. 

Furthermore, sample dataset will be introduced. Moreover, the potential benefits and challenges 

of implementing federated learning within financial contexts are also assessed. Finally, 

promising research directions for the application of federated learning in the financial industry 

are outlined. 

Keywords: Federated Learning, Financial Applications, Differential Privacy, Secure Multi-

Party Computation. 

1.  Introduction 

In recent years, the growth in the number of customers in the financial industry, coupled with the 
diversification of services and advancements in technology, has led financial institutions to adopt 

modern computer technology to complement traditional manual methods [1]. The significant 

advancements in machine learning have made it widely used in the financial industry and achieved good 
results [2]. To obtain a high-performance machine learning model, a large amount of data is often 

required for training [3]. However, in real life, data usually exists in the form of 'data islands' [4], and it 

is difficult for engineers to obtain enough data directly from a single data source. The traditional 
approach involves centralized learning, where data from various sources is aggregated onto a single 

server for model training [5]. However, data leakage can occur during the data transmission process. 

Customer data stored in financial institutions is sensitive and private. Such leakage can have significant 

negative impacts on both financial institutions and their customers. Therefore, this data should remain 
within local financial institutions. Additionally, the introduction of the General Data Protection 
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Regulation (GDPR) [6] also emphasizes the importance of privacy protection when sharing data across 

different sources. Therefore, aggregating customer data stored by various financial institutions to train 

a high-performance machine learning model while ensuring data security is a critical and practical 

challenge in real-world scenarios.  
Federated Learning (FL) is a technique for training machine learning models on distributed datasets 

[7]. FL enables data to remain on local computer for model training, eliminating the need to transfer 

data to a central server. The FL process is illustrated in Figure 1. Different local computers Ci use locally 

stored data Di to train sub-models Mi, which are uploaded to central server S for integration. The server 

S returns the integrated model 𝑀̅ to the local computers Ci for the next round of training. Since FL does 

not require data to be uploaded to the server during training, it can effectively avoid data leakage that 

may occur during data upload. Consequently, this approach is widely adopted in the financial industry. 
This paper reviewed and summarized the FL algorithms used in the financial industry in recent years, 

besides, sample dataset will be introduced, moreover, challenges faced by current FL algorithms will be 

identified. 

 

2.  Core Methodologies 

In this section, we provide an overview of federated learning algorithms related to financial applications. 

We will start with the most basic algorithm and gradually introduce some variants of the algorithm. In 

addition, in order to have a clearer layout, this section will focus on several different aspects from the 
perspective of improving performance. 

2.1.  Aggregation Algorithm 

The algorithm is designed mainly based on the training process of federated learning to improve model 
quality, accelerate model convergence, and ultimately reduce the amount of communication data. [10] 

The core idea of the aggregation algorithm is to merge the local model updates of multiple clients to 

generate a global model. The following formula 1 well illustrates this idea. It indicates that the global 

objective function of federated learning is the weighted average of the local loss functions of each client, 
where the contribution of each client is proportional to the amount of data it has.  

 

Figure 1. The process of federated learning. 
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Where the ω is the parameter of the model, N represents the number of the clients, n_i represents the 

sample numbers of C_i, n is the total number of samples, l_i (x_i,y_i ;ω) is the loss function of the local 
client C_i. [8] After introducing the core idea of the aggregation algorithm, there are two classic 

federated learning aggregation algorithms that deserve further discussion: FedAvg (Federated 

Averaging) and FedSGD (Federated Stochastic Gradient Descent). 

2.1.1.  Federated Stochastic (FedSGD) 
Inspired by stochastic gradient descent (SGD), FedSGD is an extension of SGD and is suitable in 

federated learning. By assuming there are multiple edge devices, each of the device calculates the 

gradient or parameters in the local data and send them to the central server for averaging and use the 
updated parameters for global model. [9] 

2.1.2.  Federated Averaging (FedAvg) 

The FedAvg (Federated Averaging) algorithm is a variant based on stochastic gradient descent (SGD). 

The basic idea is that each client independently performs multiple iterations of model training on local 
data (performs multiple gradient updates), and then sends the updated model parameters to the central 

server. After the server receives the model parameters of all clients, it updates the global model by 

weighted averaging these parameters. [10] The equations below Shows the process of updating the 
model on the client and central server respectively.  

𝑤𝑘 ←  𝑤𝑘 −  𝜂𝛻𝐹𝑘(𝑤𝑘)                                                             (2) 

𝑤𝑡+1 ←  ∑
𝑛𝑘

𝑛

𝑘

𝑘=1

𝑤𝑘                                                                     (3) 

Equation 2 calculates the local gradient and updates the local model 𝑤𝑘, among the parameters, ∇Fk
(wk)   represents the loss function of the client k. Equation 3 shows the server aggregates updates from 

all clients to update the global model, among the parameters, 𝑛𝑘 represents the number of client k, and 

n represents the total number of client data. 

These two algorithms appear quite similar as both utilize SGD (Stochastic Gradient Descent) for 
training and send parameters to a central server. However, FedSGD is simpler in comparison because, 

unlike FedAvg, it sends updates to the server after every small computation rather than after multiple 

iterations of local training. One of the key characteristics of FedSGD is its intensive communication 
requirement, as clients must frequently send updates to the server after each computation. Due to this 

frequent communication, FedSGD may be less efficient than FedAvg in certain situations. [9] 

2.1.3.  Federated Proximal Optimization (FedProx) 

FedAvg may experience slow or unstable convergence when processing highly heterogeneous data, 
because the model update directions of different clients may be quite different, causing interference in 

the optimization process of the global model. Hence, federated proximal optimization (FedProx) is 

proposed based on FedAvg. FedProx is a distributed proximal algorithm. Its core is to introduce a 
proximal term in each local gradient descent process to control the deviation between local updates and 

the global model. Specifically, FedProx limits the difference between the local model and the global 

model by adding a regularization term to the local loss function, thereby reducing the negative impact 
of data heterogeneity on model convergence. The proximal term is shown as below. [11] 

𝑓𝑖,𝑡  =  𝑎𝑟𝑔𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝜖𝐻 {ℓ𝑖(𝑓) + 
1

2𝜂
||𝑓 − 𝑓𝑡−1||

𝐻

2
}                                       (3) 
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Where ℓi(f)  represents the local loss function of the client. 𝜂  is the step size or learning rate 

parameter. 𝑓𝑡−1 are the global model parameters after the last round of communication. 

2.2.  Further protection using FL framework 

Even though the FL algorithms above have provided a significant protection for model training in 
federated environment. But they do not by themselves fully address all the privacy issues inherent in 

federated learning. In order to further enhance data privacy and security, technologies such as 

Differential Privacy (DP) and Secure Multi-Party Computation (SMPC) can be introduced in the 
federated learning framework. [12] 

2.2.1.  Differential Privacy (DP) 

DP introduces noise (normally Gaussian noise and Laplacian noise) to data such as model parameters 

to ensure that the results do not change significantly when a certain data point is added or removed. In 
other words, DP ensures that regardless of whether an individual's data is included, the results are almost 

the same to an attacker, thus protecting the privacy of individual data. [12] By adding artificial noise in 

model updates, DP can effectively prevent information leakage. Meanwhile, according to the way noise 
is introduced in the federated learning framework and the level of privacy protection, DP is divided into 

three different kinds, namely Centralized Differential Privacy (CDP), Local Differential Privacy (LDP), 

Distributed Differential Privacy (DDP). [13] The differences are listed in the table below. 

Table 1. Comparison between different DPs 

DP 

Method 

Noise 

Addition 

Location 

Trust 

Assumption 

Privacy 

Protection 

Scope 

Advantages Disadvantages 

Centralized 
Differential 

Privacy 

(CDP) 

Central 

Server 

 

 

Requires 
trusting the 

central 

server 

Model 
updates 

from all 

clients 

Easy to 
implement, 

high model 

accuracy 

Relies on 
server 

trustworthiness, 

potential 
privacy leakage 

Local 

Differential 

Privacy 
(LDP) 

Locally at 

each client 

Does not 

require trust 

in the server 

Local data 

of each 

client 

Comprehensive 

privacy 

protection, no 
need to trust 

the central 

server 

High noise, 

may reduce 

model accuracy 

Distributed 

Differential 

Privacy 
(DDP) 

During 

distributed 

computation, 
often with 

MPC 

Partially 

trusts the 

central 
server 

Model 

updates 

and 
aggregation 

process 

Balances 

privacy 

protection and 
model 

performance 

Higher 

computational 

and 
communication 

complexity 
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2.2.2.  Secure Multi-Party Computation (SMPC) 

SMPC has been researched for over 40 years, the basic concept is to have multiple parties compute a 

function together, but each party does not expose its own input data. Under the FL framework, SMPC 

applications can be divided into two categories: server-based and client-based.  
Server-side SMPC: All clients send processed data fragments to multiple independent servers, 

assuming that these servers are independent and not all corrupted. 

Client SMPC: Usually there is only one server, and most of the security calculations are done by the 
client. [14] 

By using SMPC in the FL framework, which significantly improves the security of the data, hence 

has been used widely in many industries, such as finance. 

3.  Applications 
In the big data environment, users' private information and various data may be recorded by edge servers 

or smartphones. In this case, providing privacy protection is crucial for intelligent development. [15] 

This is where FL comes into play. With the help of many scholars, FL has become very important in 
many different fields, especially in finance. FL largely eliminates the possibility of fraud, theft and data 

breaches. [16] In this section, we will discuss some finance-related topics to fully demonstrate the 

application of FL in finance and explain some corresponding algorithms to provide a better 
understanding. Among them, financial fraud detection, as a main application, will be elaborated in detail, 

and some other applications will also be listed. 

3.1.  Financial Fraud Detection 

Financial fraud is a serious problem that can cause huge losses to banks and consumers and has increased 
dramatically in recent years. As a result, financial fraud detection has become a hot topic, however, there 

are many shortcomings when using traditional method for financial fraud detection. For example, the 

shared data is quite limited due to cardholder privacy issues, moreover, traditional federated learning 
usually trains on their own private dataset. [17] In order to handle these issues, federated learning is 

introduced, it trains the dataset distributed on participating devices under certain coordination of a 

central sever. [18] 

Among FL, several works have made impressive contribution. In the work done by Yang et, al, they 
proposed a fraud detection method based on federated learning framework. [17] The demonstration 

diagram is displayed below in Figure 2. 

 

Figure 2. Basic flowchart of data transferring between central server and local banks 

In the graph, 𝑤𝑡+1
𝑐  represents the updated parameters of the local bank, and it follows the equation 

below: 

                                                             𝑤𝑡 → 𝑤𝑡+1
𝑐 = 𝑤𝑡 − 𝜂𝛻𝐿𝑐(𝑥𝑐 , 𝑦𝑐; 𝑤𝑡)                                        (4) 
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Where 𝑤𝑡  represents the current parameters, 𝜂  represents the learning rate, 𝛻𝐿𝑐(𝑥𝑐 , 𝑦𝑐; 𝑤𝑡) 

represents the loss gradient calculated by bank c based on its private dataset at time step t. Each bank 

downloads the shared model and trains it on local data. Then the model updates on each bank are sent 

to the central server, which aggregates the updates to improve the shared model, and the above process 
is repeated until the model converges. The formula for aggregated updates is shown in equation 4.  

                                                            𝑤𝑡+1 = 𝑤𝑡 − ∑
𝑛𝑐

𝑛
𝑎𝑡+1

𝑐𝐶
𝑐=1 𝑤𝑡+1

𝑐                                                 (5) 

Where 𝑎𝑡+1
𝑐  is the model performance metrics for bank c, it indicates the influence for the whole 

model, making it play a more important role in the global model update. 𝑤𝑡+1
𝑐  represents the local model 

parameters update.  

This approach allows different banks to jointly train fraud detection models without sharing their 
private data, which greatly helps protect user privacy. Not only that, the author used the deep learning 

model CNN for training and achieved good results. Using a dataset of European credit card (ECC) 

transactions made by European cardholders in September 2013 provided by ULB ML Group, which 
contains 284,807 transactions, only 0.172% (492 cases) of transactions were fraudulent. Therefore, 

using SMOTE to rebalance the dataset, the results are greatly improved compared to traditional methods, 

with AUC=95% and F1 score=82%. 
Not only this, in the work done by Lv et, al, on the premise of meeting privacy protection 

requirements, they proposed an idea of using vertical federated learning technology to combine financial 

and social features to build a federated learning model for social financial fraud accounts. [19] Different 

from the first sample, this work incorporates social characteristics. Not only that, but the application 
scenarios are also different. This work is more applied to two different companies, and calculations and 

model parameter updates are completed through encryption model training., the data is always kept 

locally, and only encrypted intermediate results are calculated. Figure 3 below shows the working 
process of the framework. 

 

Figure 3. Working process of the framework. 

From the given diagram, it is clear that the process follows a certain step, First, the features of 

financial and social data are extracted respectively, and the data is encrypted during the alignment and 
transmission process. Then, each bank performs model training locally, calculates the gradient update, 

and sends the encrypted gradient update to the central server after training. Finally, the central server 

aggregates the updates from each bank, updates the global model parameters, and distributes them back 

to each bank. 
Then, based on this framework, the author uses two different algorithms to train separately under 

different conditions to compare the results. In the experiment, logistic regression (LR) which is designed 

for linear model, and Gradient Boosting Decision Tree (XGBoost), which is suitable for complex non-
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linear relationships are used here, meanwhile, author utilized two situations, with financial features and 

with both financial and social features respectively and had gotten the result listed in the table 2. 

Table 2. The result gotten of two models and two situations 

features           model LR XGBoost 

Only financial features 
Accuracy: 0.693 

AUC: 0.8 

Accuracy: 0.947 

AUC: 0.95 

Financial and social 

features 

Accuracy: 0.752 

AUC: 0.845 

Accuracy: 0.959 

AUC: 0.96 

 

From the result, it is clear that the performance of the models is improved when using federated 
learning framework with both financial and social features. 

In addition, there are other works that have made great contributions. They are listed in the table 2 

below in chronological order. For each work, the year, the name of the author, the data set, method used, 
and the results obtained will be listed one by one in the table 3. 

Table 3. Other related works 

Year Author Method Dataset Result 

2019 [17] W. Yang et.al FL + CNN 
ULB ML (ECC 

transaction) 

AUC = 95% 

F1 = 82% 

2020 [21] 
W. Zheng 

et.al 

FL + like 

metric learning 

+ Deep K-
tuplet network 

+ ResNet-34 

Four datasets: 

ECC, RA, SD, 
Vesta 

Best accuracy: 99.98% on 

ECC dataset 

2021 [19] B. Lv et.al 
FL + LR / FL + 
XGBoost 

Customized 
Dataset 

FL + LR: Accuracy: 0.752 

ACU: 0.845 
FL + XGBoost: Accuracy: 

0.959 AUC: 0.96 

2024 [20] 
M. Abdul 

Salam et.al 

FL + Hybrid 
Methods)  

- Classifiers 

(RF, LR, KNN, 
DT, 

GaussianNB) 

ULB ML (ECC 

transaction) 

Best accuracy: Random 

Forest (RF): 99.99% 

2024 [22] 
T. Baabdullah 

et.al 

FL + 

Blockchain + 
machine 

learning 

algorithms 

ULB ML (ECC 

transaction) 

Best accuracy: 99.99% with 

Random Forest (RF) 

2024 [23] 
Md. S. I. 

Khan et.al 

SWIFT Dataset 

AMLSim 

dataset 

FL + Relational 

Data (Fed-RD) / 

Differential 
Privacy (DP) / 

Secure 

Multiparty 

Computation 
(MPC) 

Achieved maximum AUPRC 
of 80% on the SWIFT 

dataset and 90% on the 

AMLSim dataset 

 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/102/20241017 

67 



 

 

3.2.  Other Applications 

3.2.1.  Supply Chain Financing Prediction 

When assessing an enterprise's credit and supply chain financing risks, the company may be reluctant 

to share detailed order-level information with the funder. [24] applies the FL framework based on 1D-
CNN to assess supply chain financing risks while minimizing the exposure of sensitive order 

information, thereby enabling order-level risk assessment. 

Due to regulatory restrictions, lenders' credit data cannot be centrally modeled. [25] proposed an 
explainable vertical federated learning (EVFL) framework incorporating a counterfactual explanation 

module. This framework helps banks address lender assessment challenges without centralizing credit 

data. The explainable model allows bank staff to intuitively understand customers' credit levels. 

3.2.2.  Financial Audit 
As companies enhance their financial supervision, large audit firms must audit clients' multi-

dimensional information while ensuring that auditors maintain confidentiality and accountability. [26] 

employed the FL framework to train deep learning models, enabling auditors to review the multi-
dimensional accounting information of multiple clients while safeguarding data security. The 

framework incorporates differential privacy and segmentation learning to mitigate the risk of data 

leakage. 

3.2.3.  Malicious Transactions in Digital Currency 

The anonymity of digital currency offers a natural shield for financial criminals, leading to the rise of 

various malicious digital currency transactions. Centralized learning methods heighten the risk of user 

transaction data leakage. [27] employs the federated learning framework to train a graph neural network 
model, constructing graphs of transaction data from different sub-nodes and submitting the gradient data 

of the local graphs to a server for aggregation, enabling the identification of malicious transactions in 

the digital currency market. This approach safeguards user transaction data privacy while effectively 
detecting malicious transactions and preserving the integrity of the virtual financial market. 

4.  Dataset 

This section discusses several datasets for training federated learning in the financial domain. 

4.1.  Elliptic Dataset 
The Elliptic dataset [28] comprises over 200,000 Bitcoin transactions, represented as a graph network. 

In this network, nodes signify individual Bitcoin transactions, while edges illustrate the flow of Bitcoin 

between users. The dataset categorizes transactions into legal transactions (such as exchanges, legal 
services, etc.) and illegal transactions (such as scams, malicious activities, Ponzi schemes, etc.).  

4.2.  Lending Club Dataset 

The Lending Club dataset [29] includes loan issuance information from 2007 to 2018. It contains 
financial details such as users' credit scores and the number of financial inquiries, which are used to 

predict loan statuses (e.g., 'overdue,' 'paid in full'). 

4.3.  Kaggle Credit Card Fraud (2013) Dataset 

The Kaggle Credit Card Fraud (2013) dataset [30] contains transactions made by European cardholders 
over two days in September 2013. It includes a categorical variable indicating whether a transaction was 

deemed fraudulent (True) or not (False). The dataset comprises a total of 284,807 transaction records, 

with only 492 marked as fraudulent. 
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5.  Challenges and Future Works 

5.1.  Challenges 

The FL algorithm allows data to remain on local devices for training, with the trained sub-models 

uploaded to the cloud for aggregation. This approach effectively mitigates the risk of data leakage 
associated with data uploads. However, uploading models introduces security vulnerabilities. During 

the process of uploading the model to the server, malicious actors may exploit opportunities to attack 

the model's parameters, potentially degrading its performance or even stealing sensitive data [31],[32]. 
Model attacks can have significant negative impacts. For instance, attackers might distort the model's 

judgment, preventing it from identifying malicious digital currency transactions or accurately auditing 

the financial status of relevant individuals, thereby aiding financial criminals in evading legal sanctions. 

As discussed in the chapter 2.2.1, differential privacy [33] is a method used in FL to protect models by 
adding perturbations to sub-models before uploading them. However, a 2023 study [34] found that 

attackers can exploit noise to evade anomaly detection, making it difficult to identify perturbations that 

have been maliciously injected into the model. Therefore, how to protect the model during the uploading 
process is still one of the issues that deserves attention. 

Since the FL algorithm allows different users to train sub-models on local computers, varying 

architectures among these sub-models can hinder effective aggregation, leading to model heterogeneity 
[35]. Similar challenges include statistical heterogeneity [36]. Even within the same subfield, user data 

from different financial companies may vary significantly. For example, one audit firm may possess 

records of a client’s expenses and income, while another may also hold documentation of the client’s 

real estate holdings. These discrepancies result in data across companies not following the same 
distribution, leading to inconsistent convergence when updating sub-models. Additionally, when 

different financial institutions use varying devices to train sub-models, device heterogeneity arises [37], 

leading to models being effectively updated on devices with strong computing power, while devices 
with weaker capabilities may struggle to do so. This disparity can result in some financial institutions' 

models not being updated in a timely manner, exposing them to attacks from financial criminals who 

exploit outdated models or engage in data theft and other illegal activities. 

5.2.  Future Works 
Future work will focus on developing model protection algorithms to safeguard sub-models from attacks 

during the upload process. The simplest approach to addressing the heterogeneity problem is for the 

server provider to specify the data format, model architecture, and device requirements. Additionally, 
the use of knowledge distillation techniques can be explored to address the challenge of fusing models 

with different architectures. 

For example, the server model is regarded as the teacher model, while the sub-models trained by 
each user are considered student models. Users can utilize a public dataset to obtain output from the 

teacher model and adjust their sub-models, accordingly, aligning their outputs with that of the teacher 

model. Finally, the user's private dataset is used to fine-tune the sub-model. 

6.  Conclusion 
In this paper, we provided a comprehensive overview of federated learning algorithms and their 

applications within the financial sector. We began by reviewing existing literature, covering a range of 

federated algorithms from basic aggregation methods to more advanced frameworks incorporating 
Differential Privacy (DP) and Secure Multi-Party Computation (MPC). A comparative analysis of these 

algorithms was conducted, with the results presented in tabular form. We then explored the application 

of federated learning in the financial domain, particularly focusing on financial fraud detection. We 
reviewed existing works in this industry, conducted a thorough comparison, and highlighted other 

relevant financial applications. Then, the sample dataset is introduced. Finally, we discussed the 

challenges associated with applying federated learning in financial contexts. These challenges provide 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/102/20241017 

69 



 

 

valuable insights for future research directions and underscore the potential for further advancements in 

federated learning within the financial sector. 
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