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Abstract. This study explores the implementation and efficacy of a neural network controller for an inverted
pendulum system, contrasting it with traditional state feedback control. Initially, state feedback control
exhibited limitations in managing complex system dynamics. Subsequently, a neural network controller
was developed, trained using datasets from both uncontrolled and refined state space models. The refined
model yielded lower training loss and superior control performance. This research demonstrates the neural
network controller’s enhanced adaptability and precision, offering significant improvements over traditional
methods in controlling dynamic systems like inverted pendulums.
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1. Introduction
This article provides a comprehensive exploration of advanced control mechanisms for an inverted
pendulum system, a classic challenge in control theory and robotics. Beginning with an overview
of traditional state feedback control, the study identifies limitations in handling complex, dynamic
scenarios. It then transitions to the development and implementation of a neural network-based
controller, highlighting the advantages of machine learning in adaptive control systems. Comparisons
between the controllers, using datasets generated from both uncontrolled and refined state space
models, underscore the neural network’s enhanced precision and adaptability, culminating in a deeper
understanding of modern control strategies for dynamic systems.

2. Problem Defination
In this section, static and dynamic walking are analysed, and appropriate models and differential
equations of the dynamic system are derived.

2.1. Human Walking locomotion
Walking in humans is a dynamic activity, where maintaining maintaining static balance is challenging.
To implement bipedal locomotion in robotic systems, it’s essential to grasp the intricacies of human
walking patterns and conceive a theoretical approach to replicate these dynamics.
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Human walking pattern can be divided into a cycle consisting of two primary phases: stance and
swing. The stance phase refers to the interval during which the feet make contact with the ground,
initiating and concluding with a double support stance. The central segment of the stance phase is
characterized by a single support stance. The walking cycle typically begins with a heel strike or a
transition from double support to single support.

2.2. Bipedal Robotics: Stance and Motion
In contrast to human locomotion, bipedal robots operate through stable dual-support and less stable
single-support phases, propelling the robot forward. The classification of bipedal robots is often based
on these walking patterns.

Bipedal robot research includes static and dynamic gait analysis[1],[2]. Describing the walking
motion from a static standpoint is straightforward, using concepts like the Center of Mass (CoM) and the
Ground Reaction CoM (GCoM)[3]. Stability requires CoM and GCoM alignment, with GCoM within
the support base, as depicted in Figure 1; otherwise, the robot risks imbalance and falls.

Figure 1. Static Waking cycle model of biped robot

During the swing phase, the robot’s torso shifts laterally to align the CoM with the GCoM, which is
crucial to consider in the design of safe navigation algorithms for humanoid robots[4].

The calculation of the center of gravity involves the positions and masses of the supporting and
swinging legs. Maintaining balance involves ensuring the gravity center stays within the support area.
Deviations call for posture and joint torque adjustments, typically managed by PID controllers[5] or
similar algorithms. This control strategy is advantageous as it prevents falls during the robot’s walk by
maintaining the center of gravity within the walking path. However, this safety can limit the robot’s
ability to walk without stoppage, potentially reducing dynamic walking efficiency.

Figure 2. Freebody Diagram of the landing foot
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The following static balance equation of the foot can be derived:

R+ FA +msg = 0

OP ×R+MA +OG×msg +Mz +OA× FA = 0

2.3. Dynamic Walking (ZMP)
Dynamic walking is a widely used[6] and efficient strategy that allows bipedal robots to achieve speeds
of less than one second per step. However, the inertia involved in this strategy makes it difficult for
the robot to stop immediately, leading to instability during state transitions. To address this, the Zero
Moment Point (ZMP)[7],[8] is introduced. During the single-leg support phase, ZMP is the projection
of the robot’s centre of gravity. When the ZMP is maintained within the support area, the robot remains
stable and balanced.

The ZMP is defined as the point where the horizontal components of the robot’s main force, active
moment, and torque equal zero on the ground, assuming sufficient friction between the robot’s feet and
the ground. In a one-foot support scenario, the leg exerts a force Fa and a moment Ma on the foot. The
ground must apply a reaction force R and moments Mx,My,Mz at point P . By adjusting the position
of P so that Mx and My become zero, the ZMP is achieved, ensuring the robot’s stability.

2.4. Linear Inverted Pendulum model
To design a feasible basic gait controller for a bipedal robot, the model of the biped robot can be
simplified by assuming that the robot always has one foot on the ground. Consequently, the system
can be modelled as a Linear Inverted Pendulum Model (LIPM).

In this simplified model, the centre of mass of the bipedal system corresponds to the mass connected
to the pendulum, and the ZMP on the landing foot corresponds to the position of the cart connected to
the pendulum.

The forward ZMP dynamic formula for one leg of the robot can be derived as follows:

Xzmp = Xmc −
l

g
Ẋmc

where Xzmp represents the forward Zero-Moment Point, Xmc represents the forward displacement of
the center of mass, l is the length of the inverted pendulum, and g is the acceleration due to gravity.

2.5. Equation of motion of LIPM[9]
The inputs to the inverted pendulum system are the displacement of the cart and the expected tilt angle
of the pendulum. The actual position signal of the cart and pendulum rod is collected in each sampling
period and compared with the expected value. According to the comparison results, the corresponding
control quantity is calculated by the control algorithm.

In this system, one end of the pendulum is mounted on a cart so that the pendulum swings freely in a
vertical plane. The cart moves horizontally along a fixed track. When no control is applied, the pendulum
is in a stable equilibrium position, pointing straight up. In order for the pendulum to swing or maintain
the stable upright position when there is force applied to the system, the cart needs to be controlled so
that it is pulled forward or backward on the track.

The force analysis of the system is based on Newton Classical mechanics. The following table shows
the parameters used in formula derivation:

The following equation can be obtained by analyzing the resultant force received in the horizontal
direction of the cart:

Mẋ+ uẋ+N = F (1)
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Figure 3. Model of Linear Inverted Pendulum Cart system

Table 1. Parameters of the system
Parameter name Meaning Assumed value

M Mass of cart 1 kg
m Mass of COM 0.3 kg
u Coefficient of friction 0.02 kg m−2

F External force applied to cart
x Position of cart
θ Swing angle of pendulum
l Distance of COM to the fulcrum 0.3m
I Moment of inertia of pendulum 0.5N s2/m
ϕ Angle between pendulum and vertical up

The following equation can be obtained by horizontal pendulum force analysis:

N = mẍ+mlθ̈ cos θ −mlθ̇2 sin θ (2)

Substitute equation (2) into (1) to obtain the first dynamic equation of the system:

(M +m)ẍ+ uẋ+mlθ̇ cos θ −mlθ̇2 sin θ = F (3)

Next, the resultant force in the vertical direction of the pendulum is analysed, which can be obtained:

P = m
d2

dt2
(l cos θ) +mg

Rearrange:
P = −mlθ̈ sin θ −mlθ̇2 cos θ +mg

Therefore, the moment equilibrium equation is: The moment equilibrium equation is given by:

Iθ̈ + Pl sin θ +Nl cos θ = 0 (4)

The goal of the controller is to maintain the pendulum at an upright equilibrium position. Let
ϕ = θ − π (the angle between the vertical upright position and the pendulum). Since cosϕ = − cos θ,
sinϕ = − sin θ. Linearize at operating point ϕ ≈ 0: sinϕ = −ϕ, cosϕ = −1, θ̈2 = 0. Combine and
simplify equation (3) and (4) to obtain the linear dynamic functions of the system:

(M +m)ẍ+ uẋ−mlϕ̈ = F (5)

(I +ml2)ϕ̈−mglϕ = mlẍ (6)
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3. STATE FEEDBACK CONTROLLER DESIGN
In this section, the design and analysis of controllers of the LIPM model is introduced.

3.1. State space model of the system
From equation (5) and (6), derive the expression of ẍ and ötϕ:

ẍ =
(F − uẋ)(I +ml2)−m2gl2ϕ

(I +ml2)(M +m)−m2l2
(7)

ϕ̈ =
F − uẋ

(I+ml2)+mgl
ml +ml

(8)

The state space expression:
ẋ = Ax+BF

ẏ = Cx
(9)

The state vector x = [x, ẋ, ϕ, ϕ̇]T which are the position of the cart, the velocity of the cart, swing
angle of the pendulum, the angular velocity of pendulum respectively. F is the control input. In order to
write out the A matrix, the important elements are expressions of ẋ and ϕ̇ in equation (7):

ẋ =
−u(I +ml2)

(I +ml2)(M +m)−m2l2

ϕ̇ =
−u(I +ml2)

(I +ml2)(M +m)−m2l2

Notice that the denominator of both expressions is the same constant, denote as c = (I +ml2)(M +
m)−m2l2.

Apply the similar procedure to ϕ̇, the A matrix can be obtained as:

A =


0 1 0 0

0 −u(I+ml2)
c

m2gl2

c 0
0 0 0 1

0 −uml
c

(M+m)mgl
c 0

 (10)

Similarly, extract the B matrix from equation (7) and (8):

B =


0

I+ml2

c
0
ml
c

 (11)

Consider the system outputs to be the same as the states, thus C matrix would be an identical matrix
and D matrix would be a zero matrix:

C =

[
1 0 0 0
0 0 1 0

]
(12)

The system has two transfer functions because there are two outputs, the position of the cart (x) and
the Angle of the pendulum (ϕ), which can be affected by the input force (F ):

G(s) = C(SI −A)−1B +D (13)

The corresponding transfer functions can be calculated using ctrl from control library of Python.
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3.2. Stability analysis
If the system deviates from the original equilibrium state due to the disturbance, but after the disturbance
is removed, if it can be restored to the original equilibrium state, the system is said to be stable, otherwise
the system is unstable. The easiest way to solve the stability problem of a linear system is to find all poles
of the system and observe if there are any poles with real parts greater than zero (unstable poles). If there
are such poles, the system is unstable, otherwise it is stable.

The poles of G(s)x are: 0,−0.077, 4.344,−4.361, and the poles of G(s)ϕ are: −0.077, 4.344,−4.36.
Both transfer functions have poles landed on the right half plane, therefore the system is unstable under
open loop condition. Figure 4 shows the unstable response of the open loop system.

Figure 4. Open Loop step response of the system Figure 5. State feedback control performance of
the system

3.3. State feedback control
Adding a state feedback control to the system F = −Kx for some matrix K, now the closed-loop system
becomes:

ẋ = (A−BK)x (14)

First, the system is required to have full rank in order to be controllable:

W = [B AB A2B . . . An−1B] (15)

The n× n controllability matrix:

W =


0 0.651 −0.042 1.556

0.61 −0.042 1.556 −0.202
0 1.027 −0.067 13.466

1.027 −0.067 13.466 −1.036

 (16)

The Matrix has a rank of 4, therefore the system is controllable.
In summary, the system is unstable but controllable. Thus, pole placement can be applied to move all

the poles to the left-hand side plane to stabilize the system.
The characteristic polynomial is then calculated:

det(sI −A) = s4 + 0.041s3 + 13.102s2 + 0.697s+ 0

= s4 + a1s
3 + a2s

2 + a3s+ a4
(17)

Put in reachable canonical form ż = Ãz + B̃u:
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Ã =


−0.041 −13.102 −0.697 0

1 0 0 1
0 1 0 0
0 0 1 0

 , B̃ =


1
0
0
0

 (18)

The poles need to be designed so that the cart pendulum system can reach equilibrium without large
oscillation. Therefore, the overshoot is designed to be 5%, damping ratio ζ = 0.5, settling time ts = 5,
and natural frequency ωn = 3.92

ts
.

Two dominant poles are based on the choice of ζ and ωn, the other two less dominant poles are
placed 3 and 4 times further on the left plane which is set to be 3ζωn, 4ωn. The expression of the desired
characteristic polynomial is obtained:

(s+ 3ωnζ)(s+ 4ωnζ)(s
2 + 5ωns+ ω2

n) = s4 + p1s
3 + p2s

2 + p3s+ p4 (19)

where the poles are p1 = 3.528, p2 = 3.541, p3 = 2.306, p4 = 0.578.
The state feedback matrix K is obtained:

K = [−2.389 − 6.620 47.567 13.817] (20)

Case 1:
Test the performance of state feedback controller with a step response. This step response makes the
pendulum out of equilibrium.

Figure 5 shows the system quickly stabilizes the cart position in around 2 seconds while the pendulum
angle reaches and maintains equilibrium rapidly, demonstrating effective state feedback control.

Case 2:
This case adds a step disturbance of 5N starting at t = 0. Initial condition of ϕ = 0, x = 0. Such
disturbance can be used to simulate a sudden and consistent effect on the system during operation thus
test the adjustment ability of the system.

Figure 5 indicates a more volatile response to a 5N disturbance with higher peaks in cart displace-
ment. Unlike the previous stable response, the cart and pendulum experience greater oscillations before
stabilizing, showing robustness but with a more pronounced transient behaviour. However, the cart posi-
tion did not travel back to the initial position, this outlines the limitation of state feedback control, there
is often an error which is usually removed by more advanced control strategies like PID control[10]. In
the second half of the research, a Neural network controller will be implemented to remove the error and
achieve better control outcomes.

4. NEURAL NETWORK CONTROLLER DESIGN
The integration of a neural network controller offers a sophisticated approach to managing nonlinear
and complex systems like inverted pendulums[11]. Its ability to learn and adapt from data enables
the controller to anticipate and compensate for uncertainties and variances in system dynamics, which
traditional controllers might not handle efficiently. This adaptability and learning capability make neural
networks particularly advantageous for enhancing system robustness and achieving superior performance
in dynamic environments.

4.1. Generate training datas
The data set encapsulates the dynamic responses of an inverted pendulum system under various initial
conditions and control inputs. It stimulates the pendulum’s behaviour over time using a state-space
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model with random initial states, including small initial pendulum angles. The data set consists of states,
control actions, and subsequent states, crucial for training a neural network to learn the system’s complex
dynamics and generalize well in different control scenarios. Experimental data gathering employed two
methods: an uncontrolled state-space model for raw behaviour data and a refined state-space model with
state feedback control for precise data. This dual approach explores the neural network model’s data
requirements.

4.2. Neural network
A feed-forward neural network was designed using PyTorch to model the control of an inverted pendulum
system. The network accepts a four-dimensional input representing the system’s state and processes it
through two hidden layers, each containing 64 neurons and employing ReLU activation functions to
introduce non-linearity. The output layer generates a single value, corresponding to the control force to
be applied. The forward pass through the network can be described as:

h1 = ReLU(W1x+ b1) (21)

h2 = ReLU(W2h1 + b2) (22)

y = W3h2 + b3 (23)

where Wi and bi are the weights and biases of the i-th layer, respectively. This architecture is intended to
train on a dataset capturing the dynamics of the inverted pendulum, enabling the network to map system
states to appropriate control actions, thereby maintaining stability.

4.3. Training the model
A process was established to train a neural network for controlling an inverted pendulum system. Pre-
processed data, including system states and corresponding control forces, are loaded into PyTorch
tensors. A neural network instance is initialized and trained using the Adam optimizer and mean squared
error loss function, both standard choices for regression tasks. The loss function is defined as:

L =
1

N

N∑
i=1

(yi − ŷi)
2 (24)

where yi is the true force and ŷi is the predicted force. Over custom epochs, the network iteratively
performs forward propagation to predict forces, calculates the loss, and updates the weights through
back-propagation. The weight update rule for the Adam optimizer can be simplified as:

wt+1 = wt − η · m̂t√
v̂t + ϵ

(25)

where η is the learning rate, and m̂t and v̂t are bias-corrected estimates of the first and second moments
of the gradients. This methodology ensures the network learns to map system states to effective control
actions for maintaining stability.

4.4. Performance of the Neural Network Controller using model trained with data from an uncontrolled
state space model
First, generating training data for an inverted pendulum system by simulating 1000 samples. For each
sample, a random initial state is created with the pendulum starting from a tilted position. A random
force, ranging from -10 to 10 N, is applied to the system, and the resulting next state is calculated after
a time step of 0.05 seconds. The initial states applied forces, and next states are saved for future neural
network training.
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Figure 6. Neural Network Controller trained with data from an uncontrolled state space model with
10000 epochs, 0.01 step length, 1000 sample

Based on the results shown in Figure6, the performance of the neural network controller is clearly sub-
optimal. The cart position continuously deviates from the origin, exhibiting an unstable downward trend;
meanwhile, the pendulum angle experiences large periodic oscillations and fails to reach a balanced
state. This poor control outcome is primarily due to the use of untrained data for the control system.
The untrained data fails to accurately capture the dynamic characteristics and control requirements of the
system, leading to the neural network being unable to learn an effective control strategy, and ultimately,
it fails to achieve stable control objectives. The High loss of the trained model also proves the point:

Epoch [1/1000], Loss: 32.6771125793457
...
Epoch [121/1000], Loss: 31.44316864013672
...
Epoch [991/1000], Loss: 18.984155654907227

4.5. Performance of the Neural Network Controller using model trained with data from a state space
model with state feedback control
Case 1: 1000 epochs, 0.05 step length, 1000 sample. Using state space model with state feedback
control. The pendulum is initially started from a tilted position and started with 5N external force.

Epoch [1/1000], Loss: 280.9759521484375
...
Epoch [121/1000], Loss: 57.45454406738281
...
Epoch [991/1000], Loss: 0.02957174740731716

In comparison to before, here, 1000 epochs can bring the loss down to a very low level. Figure 7 show
stable control of both the cart and pendulum. Both cart and pendulum are stable around the 0 position
which shows better system performance in comparison to the state feedback control.
Case 2: 1000 epochs, 0.05 step length, 1000 sample. Using state space model with state feedback
control. The pendulum is initially started from a tilted position and started with 5N external force and add
random (from -5 to 5N) disturbance during the process. From Figure 8, it can be seen that this controller
exhibits strong robustness, achieving excellent control even in the presence of random disturbances.
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Figure 7. Neural Network Controller trained with
data from state space model with state feedback
control with 1000 epochs, 0.05 step length, 1000
sample and 5N external force at beginning

Figure 8. Neural Network Controller trained with
data from state space model with state feedback
control with 1000 epochs, 0.05 step length, 1000
sample and 5N external force at beginning and
random disturbance during process

4.6. Comparison of the two models
In the discussion of training outcomes, it was observed that datasets generated from an uncontrolled
state space model resulted in higher loss post-training, leading to suboptimal control performance.
Conversely, datasets derived from the refined state space model, which more accurately represent
the system’s dynamics, produced a significantly lower loss when used for training. The improved
precision of the refined dataset evidently enhanced the neural network’s ability to learn effective control
strategies, as evidenced by its superior control capabilities. This underscores the importance of precise
and representative training data in developing robust neural network controllers for complex dynamic
systems.

5. Conclusion
In conclusion, the research presented here thoroughly demonstrates the effectiveness of a neural network
controller in managing the dynamic challenges of an inverted pendulum system. The initial state
feedback control method, while effective in certain scenarios, showed limitations in handling complex
system dynamics. The subsequent integration of a neural network controller significantly enhanced
control performance, as evidenced by lower loss metrics and improved response to disturbances. These
findings underscore the potential of neural network controllers in advanced robotic and control systems,
offering substantial improvements in adaptability and precision over traditional methods.
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