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Abstract. Schizophrenia can have a significant impact on patients' lives, studies, and work. 
Patients may experience delusions, hallucinations, disorganized thinking, and abnormal behavior, 

among other symptoms. Therefore, research related to schizophrenia is of great importance. This 

paper proposes the design of a classifier based on machine learning for diagnosing schizophrenia. 

The classifier extracts N100 features, P300 features, and power features across different 

frequency bands from both time-domain and frequency-domain characteristics from 

Electroencephalography (EEG) signals. Given the small dataset, a Support Vector Machine 

(SVM) machine learning algorithm was chosen to process and classify the selected features. To 

address the limitations of SVM in handling high-dimensional data and nonlinear problems, this 

study introduces a comprehensive improvement method based on Bayesian optimization, 

Recursive Feature Elimination (RFE), and data augmentation. Bayesian optimization was used 

to find the best combination of hyperparameters for the model, thereby improving its 

performance; RFE was employed to assess feature importance and remove the least important 
features, enhancing the model's training efficiency and generalization capability. Additionally, 

data augmentation was included to increase the sample size and introduce diversity, thereby 

improving the model's robustness. The study found that these methods effectively improved 

classification accuracy and generalization ability. 
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1.  Introduction 

Schizophrenia, as a severe mental disorder, impacts various aspects of a person's life. It profoundly 

affects one's thinking, emotions, behavior, and cognitive functions. Patients with schizophrenia may 
experience symptoms such as hallucinations, disorganized thinking, impairment in attention, memory, 

and decision-making abilities, delusions, and emotional blunting. They may also exhibit lower levels of 

motor activity, poor sleep quality and efficiency, and fragmented sleep [1]. These negative 
manifestations can cause significant functional impairments in a person's social relationships, work 

capabilities, and daily living skills. Therefore, the timely detection of schizophrenia is crucial. 

Historically, diagnosis relied heavily on clinical interviews, psychological testing, observation, and 
behavioral analysis. However, due to the over-reliance on symptom descriptions and the lack of 

objective biomarkers, these methods are highly subjective, which may lead to cognitive biases by 
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doctors and result in inaccurate diagnoses. Thus, there is an urgent need for an objective diagnostic 

approach. 

Electroencephalography (EEG) can record neural activity in the brain, providing objective 

biomarkers for the diagnosis of schizophrenia. This enhances the scientific rigor and objectivity of the 
diagnostic process. Moreover, EEG allows for the real-time recording and monitoring of dynamic 

changes in brain activity, contributing to a comprehensive understanding of the patient's brain function 

and laying the foundation for personalized diagnosis and treatment [2]. 
When collecting EEG data, high-quality equipment must be used to ensure that each electrode is 

positioned according to international standards. Additionally, it is essential to maintain low electrode 

impedance. During the experiment, interference factors such as head movement, eye movement, and 

muscle activity should be minimized. Schizophrenia patients often exhibit specific EEG abnormal 
patterns, such as increased theta and delta waves. Theta waves are particularly evident in brain regions 

like the frontal lobe and hippocampus, which are closely related to emotions, memory, attention, and 

cognition. Delta waves are more pronounced in the prefrontal cortex, parietal lobe, and deep brain 
structures (such as the thalamus) and are characterized by high amplitude and low frequency during 

deep sleep. In cognitive tasks, the power of theta waves increases in schizophrenia patients, while delta 

wave power increases during rest. Additionally, abnormalities in the gamma frequency band are also 
observed in the EEG of schizophrenia patients [3]. 

However, EEG signals are complex and challenging to process manually, leading to the exploration 

of machine learning as a solution to this problem. 

Machine learning has the capability to analyze large-scale, multidimensional data. Through training, 
machine learning models can extract subtle but crucial features from vast datasets, thereby enhancing 

the importance of schizophrenia diagnosis. Additionally, when dealing with complex symptoms, 

machine learning models can provide a standardized diagnostic process, ensuring consistency across 
different hospitals and doctors. 

To better process EEG data and derive statistically significant results, machine learning can be 

effectively applied. This paper proposes the design of a classifier based on machine learning to identify 

and distinguish EEG signals between schizophrenia patients and healthy individuals. The primary 
machine learning task in this study is to develop a more reliable data processing method. This approach 

helps identify differences in brain activity between schizophrenia patients and healthy individuals, 

supporting the diagnosis and research of schizophrenia. Ultimately, the findings from this study can be 
translated into more useful tools to assist doctors in making more accurate diagnoses.  

2.  Method 

2.1.  Dataset and preprocessing 
This study utilized data measured from schizophrenia patients by researcher Brian Roach and his 

research team [4]. During data processing, the study primarily employed band-pass filtering and baseline 

correction for preprocessing. A band-pass filter of 0.1 Hz - 50 Hz was selected to remove low-frequency 

drifts and high-frequency noise from the EEG signals, retaining frequency components that are 
meaningful for analysis. Baseline correction was applied to eliminate global shifts caused by electrode 

drift or environmental factors, which helps improve the accuracy of subsequent training and application 

of the model. 
They used a simple button-press task where participants either pressed a button to immediately 

generate a tone, passively listened to the same tone, or pressed the button without generating a tone to 

study the contingent discharge in schizophrenia patients and the control group. Participants wore 72 
electrodes on their heads. During the training process, 90% of the data was used to train the model, and 

10% was used to test the model. Due to the 10-fold cross-validation, each data point served as part of 

the test set once and as part of the training set nine times throughout the entire process. Thus, all data 

were used as both training and test sets, but with different roles in different iterations. 
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2.2.  EEG-based feature extraction 

This study utilized both time-domain and frequency-domain features, including N100 amplitude, N100 

latency, P300 amplitude, P300 latency, as well as δ power, θ power, α power, β power, and γ power. δ 

power refers to the power in the 1-4 Hz frequency band, θ power refers to the power in the 4-8 Hz 
frequency band, α power refers to the power in the 8-13 Hz frequency band, β power refers to the power 

in the 13-30 Hz frequency band, γ power refers to the power in the 30-50 Hz frequency band. 

N100 amplitude is the negative peak of the Event-Related Potential (ERP) averaged signal within 
the 80-120 ms time window following the stimulus. N100 latency is the time at which the brain responds 

to the stimulus when the N100 amplitude occurs. P300 amplitude is the positive peak of the ERP 

averaged signal within the 250-500 ms time window following the stimulus. P300 latency is the time 

when the brain recognizes and processes the stimulus during the P300 amplitude. 
N100 typically presents as a negative deflection occurring approximately 100 milliseconds after the 

stimulus and is primarily associated with sensory processing, attention, and perceptual changes. P300, 

usually a positive deflection, occurs around 300 milliseconds after the stimulus and is primarily related 
to attention, information processing, and memory, serving as an important indicator of cognitive 

function. Frequency-domain features can highlight the differences in brain waves between 

schizophrenia patients and healthy individuals. Schizophrenia is associated with deficits in N1 and P3 
components in amplitude and cortical source summation, indicating attentional deficits in both early and 

late sensory/cognitive gating inputs [5]. 

2.3.  Models 

This study employs a Support Vector Machine (SVM) classifier, using the Radial Basis Function (RBF) 
as the kernel function. SVM, as a learning model, can be used for classification and regression tasks. It 

distinguishes data points by finding the hyperplane that maximizes the margin between classes. Thus, 

when used as a classifier, SVM typically has a low generalization error [6]. 
In data processing, data augmentation was performed, including adding noise, time shifts, and 

amplitude scaling, which enhanced the variation in signals, thereby increasing data diversity and 

improving the robustness of the model. 

Bayesian optimization is a global optimization method used to optimize complex objective functions. 
It improves classification by selecting the best-fit machine learning model with adjusted 

hyperparameters from existing models [7]. It first builds a probabilistic model to estimate the value of 

the objective function at untested points and then uses an acquisition function to choose the next point 
to evaluate. In training the model, this study used Bayesian optimization to select the best 

hyperparameters for SVM, including BoxConstraint and KernelScale, which optimize the performance 

of the SVM classifier. Compared to traditional optimization techniques, it does not require an explicit 
formula for the function. Therefore, Bayesian optimization is an ideal choice for hyperparameter tuning 

[8]. 

Recursive Feature Elimination (RFE) can reduce the number of features by selecting the most 

important ones, thereby improving model performance and interpretability while reducing the risk of 
overfitting. The combination of RFE, SVM, and RBF effectively enhances classification capability [9]. 

This study chose 10-fold cross-validation to evaluate model performance, which better assesses the 

generalization ability of the model since k-fold validation effectively improves the validity of the SVM 
[10]. 

In this study, to extract the above features, the data underwent baseline correction and filtering. 

Subsequently, ERP features were extracted, and the Welch method was used to estimate the power 
spectral density of the averaged ERP signal to extract the power in different frequency bands (δ, θ, α, β, 

γ bands). These frequency bands represent different brain wave activities and can reflect various brain 

functional states. 

In this study, the extracted features were used to train an SVM model. For each feature, the SVM 
model assigns a weight. Using RFE, the least important features were eliminated. Bayesian optimization 

was employed to select the BoxConstraint and KernelScale parameters within a logarithmic range of 
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[1e-3, 1e3]. In each iteration, Bayesian optimization selects new parameters to train the SVM model and 

calculates the corresponding cross-validation loss. Through multiple iterations, Bayesian optimization 

gradually approaches the optimal parameter combination, eventually finding the parameters that 

minimize the loss. 

3.  Experiments and Results 

Algorithms was initially built and run on macOS 13.6.9, implemented in Matlab 2018a. This study 

analyzed the precision, recall, F1 score, and accuracy across different folds, effectively quantifying the 
classification performance of the model. 

In the data augmentation step, Gaussian noise with a standard deviation of 10% is added to the signals. 

The maximum time shift is set to 10 milliseconds. The amplitude scaling factor is set to 5%. The selected 

frequency domain features include the δ, θ, α, β, and γ bands. These features are calculated through 
power spectral density (PSD) analysis, reflecting the energy distribution of the signal within different 

frequency bands. The ERP time window selection ranges from 100 milliseconds before the stimulus to 

500 milliseconds after the stimulus. The time window for the N100 feature is selected as 80-120 
milliseconds post-stimulus, while the P300 feature time window is chosen as 250-500 milliseconds post-

stimulus. 

During the Bayesian optimization of parameters, the optimization range for the BoxConstraint 
hyperparameter is set between 0.001 and 1000. The optimization range for the KernelScale 

hyperparameter is also set between 0.001 and 1000. The maximum number of iterations for Bayesian 

optimization is set to 30. In recursive feature elimination, the top 6 most important features are selected 

for the final SVM model training. During k-fold cross-validation, 10-fold cross-validation is used, with 
90% of the dataset utilized for training and 10% for testing. 

 

Figure 1. Performance comparison of different methods (Figure Credits: Original). 

This study established an SVM model based on the frequency domain and time domain features of 
ERP in schizophrenia. Bayesian optimization, RFE, and data augmentation were applied to enhance the 

model's classification performance and accuracy. When this model was applied to the dataset, the 

classification error rate was 10%. The model demonstrated high classification capability and 

generalization ability. The small standard deviation and classification error indicate that the model can 
maintain good performance when facing new data, avoiding overfitting issues. 
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In the experiments, effectiveness of various approaches is validated, including RFE, Bayesian 

optimization (Bayes), data augmentation (DA). As shown in Figure 1 and Figure 2, “-” denotes the 

baseline model. With the addition of Bayesian optimization, RFE, and data augmentation, the 

classification error rate gradually decreases. At the same time, evaluation metrics such as precision, 
recall, accuracy, and F1 score increase with the addition of Bayesian optimization, RFE, and data 

augmentation. The precision is particularly high in the "+Bayesian" case, which suggests that some 

redundant features might have been used to train the model, and the model may have missed some actual 
positive samples. 

 

Figure 2. Classification error rate of different methods (Figure Credits: Original). 

From Table 1 and Table 2, it is evident that applying Bayesian optimization, RFE, and data 

augmentation can significantly enhance the model's classification ability. Compared to traditional grid 

search or random search, Bayesian optimization can find better parameters in a shorter time. The use of 
RFE ensures that the model's performance is improved while reducing its complexity, making the model 

more efficient. Data augmentation helps the model capture more features in time series and noisy 

environments by adding noise, time shifts, and amplitude scaling to simulate different variations, thus 

improving the model's generalization ability and preventing overfitting, allowing the model to adapt 
better when facing new data. 

Table 1. Quantitative performance comparison of different models. 

Methods Precision Recall Accuracy F1 score 

Baseline 0.5083±0.3524 
0.4400± 
0.2828 

0.5018±0.2283 0.4667±0.3089 

+Bayesian 0.7000±0.4831 0.3286±0.2289 0.4571±0.0369 0.4467±0.3100 

+RFE 0.5250±0.2326 0.6079±0.2396 0.5411±0.1543 0.5214±0.1463 

+DA 0.6362±0.1372 0.6405±0.0835 0.6346±0.0826 0.6314±0.0900 

+Bayesian + RFE 0.6583±0.2619 0.6500±0.1873 0.6482±0.1522 0.6329±0.1898 

+Bayesian + DA 0.8791±0.0813 0.8582±0.0426 0.8651±0.0345 0.8656±0.0384 

+RFE + DA 0.7848±0.1392 0.7765±0.0751 0.7730±0.0647 0.7716±0.0804 

+Bayesian + RFE + 

DA 
0.8767±0.1044 0.9247±0.0565 0.9020±0.0571 0.8966±0.0669 
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Table 2. Error rate comparison of different models. 

Methods Backbone +Bayesian +RFE +DA +Bayesian 
+Bayesian 
+DA 

+RFE 
+DA 

+Bayesian 

+RFE 

+DA 

Error 

Rate 
0.51 0.47 0.45 0.36 0.35 0.14 0.23 0.10 

4.  Discussion 

In this study, EEG data from schizophrenia patients were analyzed, and extracted certain features from 
the ERP, including power in the δ, θ, α, β, and γ bands, as well as the amplitude and latency of N100 

and P300. RFE was used to select the six most important features, aiming to choose those that contribute 

most significantly to the model's performance. Bayesian optimization was then employed to minimize 
classification loss in k-fold cross-validation, allowing the model to perform better on new data, thus 

avoiding overfitting to a specific training set and enhancing the model's generalization ability. The 

application of Bayesian optimization, recursive feature elimination, and data augmentation significantly 

reduced the model's classification error rate while improving its generality and performance. 
Due to the small dataset, the trained model may not be sufficiently accurate. However, the use of 

data augmentation significantly enhanced the model's capabilities and performance. The application of 

selected features resulted in a lower classification error rate, confirming that N100, P300, and the δ, θ, 
α, β, and γ frequency bands are effective features for distinguishing between schizophrenia patients and 

healthy individuals. 

Despite the success of this algorithm, there are still some issues. Although Bayesian optimization is 

very effective in hyperparameter tuning, it requires more computational resources and considerable time 
when dealing with high-dimensional, large datasets. This time is spent searching for optimal parameters. 

The optimal values found by Bayesian optimization may differ on different datasets, meaning the model 

may need to be retuned for different application scenarios. RFE also shares this problem. While data 
augmentation can improve the model's generalization ability to some extent, it may also introduce 

unwanted samples, potentially leading to reduced performance when applying the model to different 

datasets, depending on the dataset type and application scenario. The model's performance may fluctuate 
significantly across different datasets, and if the characteristics of the dataset change, the model's 

performance may decline substantially, indicating potential robustness issues with the algorithm. 

Future improvements to this study could include increasing the diversity of data by using different 

devices or collecting data under varying conditions to enhance the model's generalization ability. 
Additionally, different time-frequency analysis techniques or nonlinear feature extraction methods could 

be applied to capture more complex features within the signals. Other models, such as random forest, 

gradient boosting machine, or deep neural networks, could also be explored. In deep learning, optimized 
sparse Bayesian learning frameworks could further decode brain activity [11]. Furthermore, EEG 

microstate features, combined with traditional EEG features, have shown better classification 

performance than using traditional EEG features alone, making them a promising avenue for diagnosing 
and analyzing schizophrenia [12]. 

5.  Conclusion 

In this study, a SVM was employed to classify signals, extracting features such as the amplitude and 

latency of N100 and P300, as well as power features within the frequency domain. The data was 
augmented, and RFE along with Bayesian optimization were applied to optimize the SVM model’s 

feature set and hyperparameters. Bayesian optimization identified the best parameter combination by 

adjusting hyperparameters, while RFE reduced model complexity by selecting the most relevant features, 
thus enhancing interpretability and performance. Data augmentation increased the diversity of the data, 

preventing overfitting and improving the model's generalization capability. As a result, the full model 

demonstrated excellent performance in terms of precision, recall, accuracy, and F1 score, achieving an 

average accuracy of 0.90195±0.0571. Bayesian optimization and RFE significantly improved SVM 
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model performance, while data augmentation enhanced its generalization ability. Future work could 

involve incorporating more features, using larger datasets, applying more suitable analysis techniques, 

and optimizing computational efficiency to further improve the model's performance and application 

scope. 
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