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Abstract. Lane detection technology plays an important role in the lane departure warning and 

adaptive cruise control functions of autonomous vehicle systems. Traditional lane line detection 

includes experimental steps such as preyreatment, color space conversion, feature extraction, and 

lane line tracking, but there are still some problems such as recognition accuracy in complex 

environments and parameter adjustment dependency. To overcome these limitations, this study 

uses a novel method that can directly predict the parameters of the lane shape model, thus 

avoiding complex post-processing steps. This research method uses the network structure based 
on Graph Transformer Networks (GTNS) to capture richer structural information and contextual 

relationships, thereby improving the accuracy of detection. In terms of feature extraction, Graph 

Transformer Networks is used to accurately capture the structural information of the lane through 

the attention mechanism. At the same time, the results in the later stage show that our method 

has better advantages in accuracy and speed. In short, this optimization scheme not only 

improves the detection speed but also ensures a certain degree of accuracy.  The method will 

perform better in the future after further optimization such as multi-sensor fusion and real-time 

optimization. 

Keywords: Lane Detection Technology, Learning Rate Scheduling, Attention Mechanism, Lane 

Line Tracking. 

1.  Introduction 

Lane line detection is an important basic module in automatic driving. Based on the influence of different 
road environment, vehicle occlusion, camera position and other objective factors, as well as the flat 
shape of the lane line itself, it brings challenges to the task of lane line detection. Based on the above 

characteristics, it is necessary to have strong recognition ability, running speed and context recognition 
ability to adapt to complex environmental needs. These methods often lack understanding of the overall 
structure and context of the lane, limiting their performance in complex scenarios. 

In traditional lane detection techniques, the first step is to identify key areas through image processing 
techniques such as filtering and noise reduction. Custom-designed feature extraction algorithms are then 
used to capture the details of lane edges. By fitting these features with curves, the outline of the lane is 
reconstructed [1]. As proposed by Borkar A et al., a lane detection technique has been developed that 

accurately tracks lane markings and optimizes parameters through inverse perspective transformation, 
threshold segmentation, Hough transform, RANSAC fitting, and Kalman filtering [2]. However, such 
traditional methods perform poorly under conditions of changing light, adverse weather, or unclear road 
markings. Furthermore, they are typically computationally intensive, making it difficult to meet real-
time requirements. To address the issue of poor performance in complex environments, Ke [3] utilizes 
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the Sobel operator and sliding window to detect lane lines, transforming yellow and white lane lines in 
complex environment. Recently, Lucas Tabelini [4] and his team have introduced a new method that 
redefines the lane detection task through polynomial regression, enhancing processing efficiency. 
However, this method, due to its failure to fully consider the global contextual information, still has 

room for improvement in accuracy compared to other techniques. 
To enhance the accuracy and efficiency of lane detection, this study proposes a novel hybrid model 

architecture that combines the strengths of Graph Neural Networks (GNNs) and Transformers. In the 
new architecture, the model takes structured road data as input. The framework defines the output of 
lane detection as parameters of the lane shape model, such as the camera pitch angle and the overall lane 
structure. It utilizes GNNs to process the input graph-structured data, capturing the connections between 
nodes and the geometric properties of the road. Introducing the Transformer architecture to process 
sequence data related to lane detection allows the model to learn more general feature representations 

by sharing parameters between GNNs and Transformers, thereby enhancing its generalization 
capabilities. End-to-end training is conducted with Hungarian loss. Experiments are conducted using 
samples from different weather environments to ensure the adaptability of the model for various 
scenarios. 

2.  Research Method 

2.1.  Overall Framework 

 

Figure 1. The basic framework diagram of the algorithm. 

As shown in Figure 1, the basic framework of this algorithm is illustrated. Backbone: In constructing 

our network architecture, the paper adopted an optimized version of ResNet18 as our main feature 
extraction backbone [5]. To adapt to the lane detection task and reduce the risk of over-fitting, the paper 
adjusted this architecture by reducing the number of channels and the sampling rate. The aim is to 
preserve the key structural features of lanes while minimizing unnecessary details, thereby optimizing 
computational efficiency. Then, the subsequent constructed sequence is used as input to the encoder. 

Encoder: Using the powerful ability of Graph Transformer Networks (GTNs) in processing 
structured data, integrate GTNs into the encoding layer to capture multi-dimensional relationships in 

data more effectively. This study uses the GCN [6]and HAN [7] as GNN based methods. GTNs learn 
meta-paths for given data and tasks and operate graph convolution on the learned meta-path graphs. 

The first layer of this GTNs is the adjacency matrix in the set of gt layer softmax image matrix. A 
new meta-path graph A1 is obtained by matrix multiplication of the selected adjacency matrices Q1 and 
Q2 [8]. The adjacency matrix is derived from this formula 

 Q = F (A; Wφ) = φ (A; softmax (Wφ))                                         (1) 

That is to get the weighted sum of non-negative weights of the matrix through 1*1 convolution, and 
then stack multiple layers to further abstract and integrate node features. Using the softmax function to 

normalize it can meet the requirements of the probability distribution of the output, and also provide an 
effective numerical stability to avoid gradient disappearance or gradient explosion problems when 
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dealing with large or small values. Multiple node representations from the same GCNs on multiple meta-
path graphs are integrated by concatenation and improve the performance of node classification and it 
is beneficial to learn different node representations via multiple different graph structures [5]. 

FFNs (Feed-Forward Networks) and Hungarian Fitting Loss: 

Employing Hungarian loss for bipartite matching between predicted parameters and actual lanes, and 
further optimizing the data using the matching results. 

2.2.  Adjusting the Learning Rate Dynamically 
This study employs a cosine annealing strategy, which starts with a high learning rate and then gradually 
reduces this rate through multiple cycles of cosine function adjustments. This method generates a 

learning rate curve that appears exceptionally smooth, with the curve starting at a higher learning rate 
level and gradually approaching zero. Such a learning rate scheduling mechanism not only promotes 
rapid convergence of the model but also helps to enhance the model's generalization ability. 

 𝜂𝑚𝑎𝑥=𝜂𝑚𝑖𝑛 +
1

2
(𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (1 + cos (

𝑇𝑐𝑢𝑟

𝑇𝑖
) 𝜋)                                 (2) 

When Tcur = Ti;  setηt = ηmin . When Tcur = 0 set ηt = ηmax initialize the current temperature 

Tcur to a predetermined value of T, at which point the algorithm starts and randomly adjusts the 

temperature to reach its lowest value. As the algorithm progresses, the temperature  Tcur begins to 
decrease gradually following the pattern of a cosine function, ensuring that the learning rate can fluctuate 
within a reasonable range. 

Restart Strategy: When Tcur drops to zero, it indicates that the algorithm will perform a restart. In 
this restart process, the paper set η to its maximum value ηmax  to ensure that the model can have 
different learning rates at various training stages, thereby avoiding getting stuck in local minimum value 

in this new cycle. Although the adjustment of the learning rate still follows the pattern of a cosine 

function, due to the resetting of η to ηmax at the restart and this effectively provides the model with a 
"fresh" starting point, allowing the model to undertake further learning tasks. As the cycles continue to 
repeat, the model's understanding of the data gradually deepens, and its generalization ability steadily 
improves. If a model performs exceptionally well within a certain cycle, then the length of that cycle 
can be appropriately extended to allow the model to utilize the current learning rate more fully for 
training; conversely, if the model becomes stuck or performs poorly, then the cycle can be restarted 
prematurely, and adjustments can be made to the rate or magnitude of the learning rate decrease, in 
hopes of achieving better training results in the new cycle. This strategy not only helps the model 

converge to the optimal solution more quickly but also enhances the model's generalization ability, 
allowing it to demonstrate better stability and robustness when facing unknown data. 

2.3.  Hungarian Matching 
In this collection, each curve is labeled with a binary tag indicating whether it represents a lane or not. 

The lane prediction is represented as ℋ = {hi|hi = (ci, gi)}
i=1

N
, where N is set to a relatively large value 

that exceeds the number of lanes in the existing samples. Each element hi represents a possible lane or 

non-lane. Meanwhile, the paper constructed a real-world sequence of lane markings that encompasses 

all observed lanes in a specific scenario, represented asℒ = {l̂i|l̂i = (ĉi, ŝi)}
i=1

N

. Since the size of the 

predicted set may be larger than the actual number of lanes, the paper expands the real lane markings to 
the same length, filling the unoccupied positions with non-lane labels. Next, the paper defines an 
optimization problem aimed at finding an optimal mapping function z, which establishes a one-to-one 
correspondence between the set of predicted curves and the augmented set of real lane markings. By 
minimizing the cost of this mapping, the paper can ensure that each real lane achieves the best possible 
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match with its predicted counterpart.z(i) represents the most suitable measurement curve for the actual 
vehicle i. 

 ẑ = argzmin ∑ d (li
̂, hz(i))

N

i=1
                                             (3) 

This process transforms the lane detection problem into a bipartite graph matching problem. By 
solving this minimization problem, the paper is able to precisely match the predicted curves with the 
actual lanes, thereby significantly enhancing the accuracy of lane detection [9]. Hungarian loss [10] for 
all pairs matched in the previous step. Referring to the method of Nicolas Carion [10] and others,this 

study define the loss similarly to the losses of common object detectors: 

 L = ∑ −ω1 logP
ẑ(i)

(ĉi) + 
N

i=1
(ĉi = 1) ω2L1 (ŝi, s

ẑ(i)
) + (ĉi = 1) ω3L1 (α̂i, α

ẑ(i)
, β̂i, β

ẑ(i)
)      (4) 

2.4.  Lane Shape Model 
This formula is used to represent a single-lane line on approximately flat ground: 

 X= kZ3 + mZ2 + nZ + b                                                     (5) 

Where k, m, n, and b are real number parameters, and (X, Z) represents a point on the horizontal 

plane. 

For an oblique camera with an angle φ to the ground, the curve of the inclined image plane is 

 u′ =
k′×cos2 φ

(v′−f sin φ)
2

+
m′ cos φ

(v′−f sin φ)
+ n′ +

b′×v′

cos φ
− b′ × f tan φ                             (6) 

Here, f is the focal length measured in pixels, and (u‘, v’)are the corresponding high-frequency 

transformed positions [9]. By combining the parameters with the pitch angle φ, the form of the curve in 
the tilted camera plane is given by: 

 u′ =
k′′

(v′−f′′)
2

+
m′′

(v′−f′′)
+ n′ + b′′ × v′ − b′′′                                      (7) 

In almost all scenarios, the lanes are of a thin and elongated shape. Therefore, the k, n, m, and f 
parameters are shared across all scenarios [11]. Thus, the parameters output by the t-th lane are: 

 gt = (k′′, f′′, m′′, n′, b
t

′′
, b

t

′′′
, αt, βt)                                                (8) 

3.  Experiments Results 

 

Figure 2. Visualization of predictions on the Tusimple dataset. 

As shown in Figure 2, the visualization results of this study on the Tusimple data set. At the coding level, 
the application of gtns demonstrates its evident advantages: these images are exactly the results our 
model has derived after a series of complex calculations. In more complex environmental conditions, 
the model is able to accurately calculate various parameters of the curve, such as curvature, rate of 
change, second-order curvature, third-order curvature, etc. 

 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241064 

36 



 

 

Table 1. Comparison with current advanced methods on the Tusimple data set. 

Method  fps FP FN Acc 

SCNN 7 .0617 .0180 96.53 

PINet 30 .0294 .0263 96.70 

FastDraw 90 .0760 .0450 95.20 

This study 420 .0293 .0402 96.21 

 

As shown in Table 1, the results obtained by comparing this study with currently popular methods. 
At the coding level, the application of gtns demonstrates its evident advantages: these images are exactly 
the results our model has derived after a series of complex calculations. In more complex environmental 
conditions, the model is able to accurately calculate various parameters of the curve, such as curvature, 
rate of change, second-order curvature, third-order curvature, etc. 

In the table, the paper uses the Tusimple metric to evaluate the accuracy of various methods. Data 
shows that this method performs the best in terms of speed, while still maintaining a high level of 

accuracy. Despite some minor compromises in error rate, this does not affect its effectiveness in practical 
applications. 

Compared to the FastDraw method, our method has improved accuracy by about 1%. More 
importantly, compared to other two-stage methods, this approach achieves competitive accuracy with 
fewer parameters and faster speed, as well as the lowest false detection and missed detection rates. 

4.  Conclusion 

The lane detection algorithm proposed in this study, based on GTNs, achieves efficient and accurate 
detection of lane lines by integrating the strengths of graph neural networks and the Transformer 
architecture. The experimental results demonstrate that the algorithm can stably output key parameters 
of the lane shape model, such as curvature and rate of change, under various weather conditions, 
providing robust technical support for the lane departure warning and adaptive cruise control functions 
of autonomous vehicle systems. Although algorithms perform well in lane detection tasks, their accuracy 

can be compromised under extreme weather conditions or when roads are severely worn, requiring 
further optimization to enhance robustness in complex conditions. Looking forward, it is possible to 
explore the integration of lane detection algorithms with other autonomous driving functionalities more 
closely. 
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