
 

 

Route planning and obstacle avoidance using Q-Learning in 

MATLAB 

Kaiyuan Lu 

Information Systems Science and Engineering Course, Ritsumeikan University, 

Ibaraki, Osaka, 603-8577, Japan 

is0700ps@ed.ritsumei.ac.jp 

Abstract. Recently, autonomous navigation has become important for many applications like 

self-driving cars, delivery drones, and robots. These domains are typically characterized by 

issues in planning an efficient route and object avoidance. Therefore, the paper describes work 

that utilizes Q-Learning as a means of reinforcement learning for autonomous navigation in 

terrain based on grid representations. Q-Learning allows an agent to acquire optimal signals in 

terms of strategy without the need for awareness of the surrounding environment. MATLAB was 

employed for the construction of the Q-Learning algorithm, as it was necessary to execute, 

evaluate, and simulate the algorithm in a controlled setting. In this study, the agent was tested in 

other environments of varying sizes (10×10, 15×15, and 20×20) populated with randomly 

generated obstacles. Benchmark values such as average path length, number of collisions and 

convergence speed were observed as a measure of the agent’s performance. The analysis of the 

values obtained confirms that the agent is able to capture the shortest path from the starting point 

to the goal while avoiding the obstacles. Q-Learning is found to be flexible and effective in 

solving the presented navigation problems in this research. The future work would include the 

enhancement of the efficiency of the algorithm along with the applying of the system in dynamic 

and more complex scenarios, in order to solve practical problems. 

Keywords: MATLAB Simulation, Q-Learning, Reinforcement Learning, Obstacle Avoidance, 

Autonomous Navigation. 

1.  Introduction 

Path planning and obstacle avoidance represent significant challenges for autonomous navigation 

systems, which are essential for the development of self-driving cars, drone deliveries, and healthcare 

robots. However, there has not been much research on using Q-learning for dynamic, real-world 

navigation tasks. The research aims to enhance these systems through the utilization of Q-learning, a 

non-policy, model-free reinforcement learning algorithm initially developed by Watkins and Dayan in 

1992 [1], to assist the agent in navigating a grid while avoiding specific areas. Therefore, simulations 

are conducted in MATLAB to train the agent in a grid environment with randomly located obstacles, 

and the process included setting the initial Q values of the state-action pairs, balancing exploration and 

exploitation using the ϵ-greedy strategy, updating the Q values with the help of environmental rewards, 

and evaluating the performance by means of the average path lengths, the number of collisions, and the 

convergence rate. The paper aims to enhance the parameters and strategies of Q-learning to increase the 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

112 



 

 

effectiveness of autonomous navigation systems in complex and rapidly changing environments, which 

can contribute to the successful development of autonomous navigation systems, and thus to the 

development of efficient autonomous navigation systems. Moreover, it illustrates how Q-learning can 

be effectively employed to regulate autonomous navigation, thus exerting a beneficial influence on the 

domain of reinforcement learning. The results not only provide a realistic reference for the design of 

more effective automatic navigation systems, but also help improve the algorithms used in self-driving 

cars and drones to ensure optimal functionality in different terrain conditions [2]. 

2.  Literature Review 

Q-learning is a type of reinforcement learning that does not require the model of the environment and 

can help an agent understand the value of actions taken in a state to get the best possible outcome. 

Defined by Watkins and Dayan in 1992, Q-learning stands out for its ability to approximate optimal 

policies even when it does not have access to an environment model [1]. The algorithm works by 

continuously adjusting the Q-values, which are the expected future rewards for stateaction pairs, based 

on the agent’s experience. This process is repeated until the Q-values represent the best policy, which 

helps the agent to achieve the highest total reward. The ϵ-greedy policy is typically used to control the 

trade-off between exploration and exploitation, allowing the agent to take new actions while also taking 

actions that have been known to give rewards. 

When Q-learning was first introduced, it was mainly used in grid environments to tackle basic 

navigation and control issues. For example, Peng and Williams developed a modified Q-learning 

algorithm that deals with delayed rewards, bringing the algorithm closer to real-world problems [3]. The 

combination of Q-learning with neural networks has attracted a great deal of attention, especially after 

the introduction of deep Q-networks (DQNs) by Mnih et al, which integrated Q-learning with deep 

learning, thus enabling the algorithm to address problems with large state spaces, including those 

encountered in video gaming. As a result, the DQN exhibits comparable performance to humans in 

numerous Atari games, proving the efficiency of Q-learning in profound scenarios [2]. In addition, many 

extensions to the basic Q-learning algorithm have been suggested to increase its effectiveness and 

productivity. The overestimation problem is addressed by Double Q-learning proposed by Hasselt, 

which uses two Q-value estimators to enhance the stability and accuracy of the learning process [4]. 

Another technique proposed by Schaul et al called Prioritized Experience Replay improves the 

experience replay technique by sampling experiences with high potential learning rates for faster and 

better learning [5]. And research by Sutton and Barto emphasized the importance of reinforcement 

learning techniques, including Q-learning, for solving sequential decision problems [6]. It has paved the 

way for numerous applications in robotics, gaming, and autonomous systems. In the field of robotics, 

Kober et al extensively reviewed the applications of reinforcement learning in robotic control, 

emphasizing the potential of Q-learning for developing adaptive control policies [7]. In their study of 

continuous control using deep reinforcement learning, Lillicrap et al. demonstrated that Q-learning is 

applicable to high-dimensional action spaces, thereby extending its utility beyond discrete action 

environments [8]. 

Nevertheless, research on the use of Q-learning to solve real-world navigation problems is still not 

very extensive. Thus, most of them have been conducted in controlled, static environments, with fewer 

investigations of the issues related to the real world and its dynamic nature. This gap proves that there 

is more work to be done in applying Q-learning for autonomous navigation in dynamic environments, 

and related research has explored the application of Q-learning in environments such as self-driving cars. 

For example, study by Aradi on the state of the art of deep reinforcement learning in autonomous driving 

showcases the current advancements and challenges faced in the field [9]. Similarly, Gu et al explored 

the integration of reinforcement learning with computer vision techniques for autonomous navigation in 

complex, unstructured environments [10]. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

113 



 

 

3.  Methodology 

3.1.  Environment Setup 

3.1.1.  Grid-Based Environment. The grid-based environment is a two-dimensional world modelized by 

cells where the agent, the obstacle, and free space can be located. The goal of the agent is to move from 

an initial position to a target position while avoiding certain areas of the environment. The grid 

environment in this study is 10×10, 15×15, and 20×20 in order to examine the performance and stability 

of the Qlearning algorithm on different levels of problem size. Each grid cell represents a state, and the 

agent can move in four possible directions: up, down, left, or right. 

3.1.2.  Obstacle Configuration: The obstacles are distributed throughout the grid in a manner that 

reflects a real-world scenario. The number of obstacles is increased in proportion to the grid size in order 

to maintain a comparable level of difficulty across different grid sizes. For example, in a 10×10 grid, 

approximately half of the cells are occupied by obstacles, while in a 15×15 grid, one-third of the cells 

are obstacles, and in a 20×20 grid, one-fourth of the cells are obstacles. The configuration of the 

obstacles remains constant within an episode; however, they can be rearranged between episodes to 

encourage the agent to develop a general navigation strategy. 

3.2.  Q-Learning Algorithm Application 

The Q-learning algorithms are implemented in MATLAB due to its strong numerical computing 

capabilities and graphical interface. MATLAB provides many libraries and simplicity, making it a 

suitable tool for developing and testing machine learning algorithms. 

In terms of Q-value initialization, all state-action pairs have their Q-values initialized to zero. This 

represents an unknowing agent with no prior knowledge of the environment, which must discover the 

value of actions through trial and error. The Q-values are stored in a matrix with states as rows and 

actions as columns. In terms of the state-action selection strategy, an ϵ-greedy policy is used to balance 

exploration and exploitation. With probability ϵ, the agent takes a random action (explore), and with 

probability (1-ϵ), the agent takes the action with the highest Q-value (exploit). The exploration rate (ϵ) 

starts high to enable exploration and decreases over time to allow more exploitation as the agent learns 

about the environment. In terms of Q-value updating, the Q-values are updated iteratively using the 

Bellman equation: 

 𝑄(𝑠, 𝑎)  =  𝑄(𝑠, 𝑎)  +  𝛼 ∗  [𝑟 +  𝛾 ∗  𝑚𝑎𝑥𝑄(𝑠’, 𝑎’) —  𝑄(𝑠, 𝑎)] (1) 

where s is the current state, a is the chosen action, r is the reward, s’ is the next state, 𝛼 is the learning 

rate, and γ is the discount factor. This update rule uses the agent’s experience to bring Q-values closer 

to expected future rewards. 

3.3.  Training Process in Reinforcement Learning 

The training process is comprised of multiple episodes, each commencing with the agent in its initial 

state and concluding upon the agent’s attainment of the goal state or the maximum number of steps. In 

each episode, the agent selects an action in accordance with the ϵ-greedy strategy, executes the action 

to transition to the subsequent state and receive a reward, updates the Q-value, and then advances to the 

next state. This process is repeated until the Q-values have reached a state of equilibrium and the optimal 

values have been identified. In order to guarantee the efficacy of the training process, the following 

procedures were implemented. The initial step is the state resetting. At the outset of each episode, the 

agent is situated in the initial position, and the obstacles are relocated randomly to provide a diverse 

array of training scenarios. The second component is the reward function. A positive reward is conferred 

upon the agent upon reaching the goal, whereas a negative reward is given when the agent collides with 

an obstacle or is situated in a no-reward state. Upon reaching a goal, agents receive +100. Conversely, 

each step taken results in -1 for encouraging shorter paths. Furthermore, agents incur a negative 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

114 



 

 

reinforcement of -100 in the event of colliding with an obstacle. Finally, there is exploration decay. The 

exploration rate (ϵ) undergoes a decline over time. The exploration rate (ϵ) is initially set to 1 and then 

gradually decreased to 0.1, with the objective of achieving a balance between exploration and 

convergence to the optimal strategy. 

3.4.  Experiment Setup 

3.4.1.  Parameter Settings: The key parameters for the Q-learning algorithm are shown in Table 1. These 

parameters are designed to account for both the efficiency of the learning process and the speed of 

convergence. 

Table 1. Key Parameters for the Q-Learning Algorithm 

Parameter Value 

Learning Rate (α) 0.1 

Discount Factor (γ) 0.9 

Initial Exploration Rate (ϵ) 1.0, decayed to 0.1 

Number of Episodes 1000 for each grid size 

Maximum Steps per Episode 100 for 10×10 grid, 150 for 15×15 grid, and 200 for 20×20 grid 

3.4.2.  Training and Testing. In the training phase, the Q-learning algorithm is applied for the specified 

number of episodes on each grid size. The agent navigates the grid, accumulates rewards, refines Q-

values, and identifies the optimal route to the objective. The efficacy of the training process is evaluated 

through the examination of two key metrics: the convergence of Q-values and the reduction in the 

number of steps required to reach the goal. In the testing phase, the learned strategy is tested by having 

the agent move from the starting point to the goal without updating the Q-values. The basis for 

performance evaluation is shown in Table 2 below. 

Table 2. Basis for Performance Evaluation 

Metrics Description 

Average Path Length Quality of the action sequence from start to goal. 

Collision Count Number of times the agent hits obstacles. 

Convergence Rate Rate at which Q-values stabilize, indicating learning efficiency. 

 

Multiple trials with different obstacle layouts ensure reliability, and results are averaged to evaluate 

Q-learning efficiency across different grid sizes and obstacle densities. The findings inform the tuning 

of Q-learning parameters and the enhancement of agent mobility. 

4.  Results 

4.1.  Path-finding Visualization and Efficiency 

Figure 1 below shows the path-finding results in three different grid sizes, 10×10, 15×15 and 20×20. On 

the smallest 10×10 grid, the Q learning algorithm shows its potential by finding a rather simple and, 

therefore, most efficient route to the target with the least number of deviations. This unobstructed path 

illustrates the algorithm’s capability for other less complicated conditions in addition to the basic 

navigation tasks applied in this study. For the grid size of 15×15 and 20×20, the visualization gives the 

impression of complex paths than the earlier sizes of the grid. The paths are extended and more complex 

in term of navigation, to go around a higher number of obstacles. This complexity reflects the 

algorithm’s ability to change its strategy when the difficulties of the environment rise and state space 

enlarges. In the larger grid while the algorithm still finds the target it does so through a more complex 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

115 



 

 

path. This efficiency in navigation even with the increase in the dimensionality is depicted towards the 

latter parts of Figure 1 showcasing not only the comparison of the solution between the two scales but 

rather the algorithms ability to achieve the goal in each and every case. This visualization serves a dual 

purpose. Path finding strategies at different levels of abstraction are compared and successful path 

optimization at each level is visualized. In addition, the flexibility of the algorithms to solve a variety of 

problems is demonstrated, thus emphasizing the efficiency of the algorithms to perform path finding 

and optimization under any conditions. 

 

Figure 1. Path-Finding Results for 10×10, 15×15, and 20×20 Grids. 

4.2.  Computational Demand and Training Time 

The computational time grows exponentially with the grid size, as shown in Figure 2. The smallest grids 

require the least amount of training time, while the largest grids require much more. This trend indicates 

that as task complexity increases, more computational resources are required to solve the problem, which 

is a major scalability issue when using Q-learning in larger, more complex scenarios. 

 

Figure 2. Comparison of Computational Time Required for Training across Different Grid Sizes. 

4.3.  C. Convergence Behavior 

Figure 3 shows the performance of Q-learning algorithm in the convergence across the grids. It depicts 

the sample number needs to run the algorithm in order to achieve stable and an optimal policy. 

Convergence was fast in the 10×10 grid and thus the learning process was evident to be effective. On 

the other hand, the larger grids especially the 20×20 had a slow convergence and this could be attributed 

to the fact that as 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

116 



 

 

 

Figure 3. Convergence Behavior of Q-Learning across Various Grid Sizes 

The results show that while the Q-learning algorithm can successfully learn and plan routes and 

strategies to traverse different environments, the complexity, computational effort, and learning rate of 

the paths decreases as the difficulty of the environment increases. Detailed path-finding visualizations 

not only help to provide a clear picture of the algorithm's performance in navigation, but can also be 

used to assess operational flexibility, effectiveness, and ability to handle tasks of increasing size. 

5.  Discussion 

The results of the experimental evaluation provide insight into the efficacy and limitations of the Q-

learning algorithm as the grid environment becomes increasingly complex, with one of the main issues 

being the increase in computational complexity when dealing with larger grids. This increase poses a 

significant challenge for real-time applications where timely decision making is critical. The 

computational cost of the algorithm also becomes higher as the grid size increases, which highlights a 

scalability issue that may limit its applicability in large real-world application scenarios. This study 

identifies several key aspects of Q-learning’s scalability and flexibility that have hitherto been given 

little attention in current literature. Much of the previous relevant research focuses on its applicability 

in limited or uncomplicated scenarios. For instance, Watkins and Dayan showed that the algorithm could 

efficiently solve problems and make correct choices in a grid world. However, these studies seldom 

addressed the issues of computational complexity and environment scaling. Thus, this study contributes 

to the aforementioned premises by establishing a positive correlation between the size of the 

environment and both computational time and learning complexity, which is a significant finding for 

applications that require swift decisions. 

Furthermore, the ratio of exploration to exploitation is a critical parameter for the algorithm’s 

performance. Initially, a high exploration value allows the agent to gather general information about the 

environment. However, there is a crucial need to transition to exploitation during training. This transition 

must occur before the algorithm prematurely settles on suboptimal policies, as observed in the 20x20 

grid scenario. This observation suggests that while Q-learning is efficient in navigating the environment, 

it may not be suited to all conditions. Adjusting exploration parameters during training could improve 

Q-learning’s performance on larger grids. Incorporating adaptive parameters, such as the exploration 

rate, or other progressive exploration methods like curiositydriven strategies, could help achieve a better 

balance between exploring new strategies and exploiting known ones. These improvements may address 

some scalability challenges, as suggested by state-of-the-art methods recommending adaptive 

reinforcement learning for better results in large-scale environments. 

6.  Conclusion 

This paper presents a detailed evaluation of the Q-learning algorithm for autonomous path search on 

grids of different sizes (10×10, 15×15 and 20×20).The results reveal the algorithm’s capability to 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

117 



 

 

efficiently traverse and find optimal paths in a variety of environments, emphasizing the algorithm’s 

flexibility and ability to overcome various obstacles. As can be seen from the efficient direct paths in 

10×10 grids, Q-learning is very effective in smaller grids, but in larger grids the scalability issues 

become apparent. In the 15×15 and 20×20 grids, the algorithm is still able to find the targets, albeit with 

longer and more complex paths than in the 10×10 grid, and with increased computational cost and time. 

The research reveals scalability issues that must be addressed for Q-learning to be applicable to real-

world environments with multiple states and actions where timely action is important. The visualizations 

of path solutions allow for the observation of not only the navigation strategy employed, but also the 

performance of the underlying algorithm in a multitude of scenarios. The results of these visualizations 

are in accordance with the data regarding the computational requirements and training times for larger 

grids. Future research should investigate the potential of more sophisticated machine learning methods, 

such as deep learning or combinations of different methods, so as to enhance the efficiency of the 

algorithmic learning and decision-making process. Additionally, adaptive exploration and exploitation 

strategies can be incorporated to improve the performance of algorithms in dynamic environments. 

References 

[1] Watkins, C.J.C.H. and Dayan, P. (1992) Q-Learning. Machine Learning, 8(3-4): 279-292. 

[2] Mnih, V., Kavukcuoglu, K., et al. (2015) Human-level Control through Deep Reinforcement 

Learning. Nature, 518: 529-533. 

[3] Peng, J. and Williams, R.J. (1993) Efficient earning and planning within the Dyna framework. 

Adaptive Behavior, 1(4): 437-454. 

[4] Hasselt, H. (2010) Double Q-Learning. Neural Information Processing Systems, 2613-2621. 

[5] Schaul, T., Quan, J., Antonoglou, I. and Silver, D. (2015) Prioritized Experience Replay. CoRR. 

[6] Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An Introduction, MIT Press. 

[7] JKober, J. Bagnell, J.A. and Peters, J. (2013) Reinforcement learning in robotics: A survey. The 

International Journal of Robotics Research, 32(11): 1238-1274. 

[8] Lillicrap, T.P. Hunt, J.J. Pritzel, A, et al. (2015) Continuous control with deep reinforcement 

learning. CoRR, abs/1509.02971. 

[9] Aradi, S. (2020) Survey of Deep Reinforcement Learning for Motion Planning of Autonomous 

Vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(2): 740-759. 

[10] Gu, S.X., Holly, E., et al. (2017) Deep Reinforcement Learning for Robotic Manipulation with 

Asynchronous Off-Policy Updates. 2017 IEEE ICRA, Singapore, 3389-3396. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241028 

118 


