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Abstract. This research presents an innovative SLAM algorithm that integrates Convolutional 

Neural Networks (CNNs) with LIDAR and stereo vision to significantly enhance the accuracy 

of environmental modeling and the construction of dense 3D point cloud maps in complex and 

dynamic surroundings. By processing pre-recorded video data and employing advanced image 

segmentation techniques, this study achieves a deep fusion of visual and geometric data, resulting 

in highly detailed and precise 3D representations of the environment. The experimental results 

demonstrate that this approach effectively detects and excludes dynamic objects, thereby 

significantly improving the overall quality, robustness, and reliability of the constructed maps. 

This work represents a substantial advancement in SLAM technology, particularly in its 
capability to model and capture intricate environmental details under varying conditions, making 

it a powerful tool for precise environmental mapping. 

Keywords: Convolutional Neural Networks (CNNs), LIDAR, Stereo vision, Image 

segmentation, 3D point cloud maps. 

1.  Introduction 

In recent years, the rapid advancement of artificial intelligence and robotics has markedly accelerated 
the development of unmanned vehicles, making them pivotal in sectors such as automated logistics, 
intelligent security, and autonomous navigation. A cornerstone technology that enables these vehicles 
to operate autonomously is Simultaneous Localization and Mapping (SLAM). SLAM empowers 
vehicles to ascertain their real-time location based on sensor data while concurrently constructing a map 
of their environment. However, as environmental complexity increases, traditional SLAM systems 
encounter significant challenges, particularly in dynamic settings where objects can move unpredictably. 

Xie (2022) systematically analyzed the limitations of traditional visual localization methods in complex 
environments, emphasizing the need for advanced techniques like CNNs to enhance robustness [1]. The 
grid-based potential field approach, as proposed by Jung and Kim [2], has demonstrated effectiveness 
in addressing the local minimum issue by integrating repulsive fields between adjacent obstacles. This 
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approach provides a solid foundation for further advancements, especially in the integration of sensor 
data to enhance environmental modeling. 

The integration of deep learning techniques, particularly Convolutional Neural Networks (CNNs), 
into SLAM systems has opened new pathways to addressing these challenges. CNNs are especially 

proficient at extracting and integrating features from images, thereby enhancing the accuracy of SLAM 
systems in dynamic settings. Moreover, Tang et al.'s [3] advancements in efficient correspondence 
prediction techniques have played a crucial role in enhancing the robustness and real-time capabilities 
of SLAM systems in dynamic environments. 

Despite the progress made in intelligent vehicles currently available on the market, there are still 
some limitations. Solutions that rely on either a single camera or a single LIDAR sensor offer unique 
advantages, yet each also presents specific challenges. LIDAR, known for its detailed environmental 
data capture, performs well in navigation and obstacle avoidance but can exhibit inconsistent point cloud 

density under certain conditions, particularly in sparse scenes where it may fail to detect all objects. 
Conversely, stereo cameras can capture color and texture details, but their effectiveness can be 
constrained by factors such as limited field of view and range, leading to potential blind spots in the 
areas monitored by the unmanned vehicle. 

Recent developments in deep learning have had a profound impact on point cloud processing and 
semantic segmentation, both critical for environmental modeling and the construction of dense 3D point 
cloud maps. For instance, Li et al. introduced PointCNN, a convolutional neural network specifically 

designed for processing point cloud data. This innovation has significantly improved the ability to 
generate dense point cloud maps [4]. Building on this foundation, significant advancements in deep 
learning frameworks for 3D classification and segmentation of point clouds have been made, introducing 
innovative approaches to learning features directly from raw point cloud data. These advancements have 
set new standards in accurate environmental modeling. Subsequent research, including the work by 
Charles et al., has further refined these architectures to address more complex classification and 
segmentation tasks, reinforcing their role as critical tools in 3D point cloud processing [5]. 

In the realm of action recognition, Demisse et al. proposed a novel pose encoding method that 
substantially enhances the robustness of skeleton-based action recognition in noisy environments, 
demonstrating the versatility of deep learning across different applications [6]. Additionally, Chen et al. 
made significant strides in semantic image segmentation with the development of DeepLab. This model 
integrates deep convolutional networks, atrous convolution, and fully connected Conditional Random 
Fields (CRFs), greatly improving the accuracy of object segmentation within images, which in turn 
advances the precision of environmental modeling [7,8]. 

To address the challenges mentioned above, this paper presents a SLAM algorithm that integrates 

laser-assisted stereo vision. This algorithm tackles issues such as the low detection accuracy and limited 
range often encountered in stereo vision methods, as well as the degradation caused by insufficient 
geometric information in purely laser-based approaches. The proposed approach leverages the strengths 
of visual sensors, which excel at capturing color and texture details, and combines them with structural 
features derived from laser scanning to achieve more accurate and robust pose estimation. In this method, 
CNNs are utilized to process images and extract key features efficiently, which are critical for real-time 
environmental perception and scene comprehension. By merging the visual information obtained from 

CNNs with the geometric data provided by LIDAR, the system can construct high-precision 3D point 
cloud maps, significantly enhancing the visual perception and operational accuracy of unmanned 
vehicles in complex environments. 

Future studies will explore the integration of additional sensor data types to further enhance the 
adaptability and robustness of SLAM systems in dynamic environments. Moreover, improving the real-
time performance and computational efficiency of these algorithms will be crucial for enabling reliable 
autonomous navigation across a broader spectrum of applications. It is anticipated that the continuous 

advancement of these technologies will make substantial contributions to the progress of intelligent 
logistics, service robotics, and other fields reliant on automation. 
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2.  Overall Structure of the Stereo Vision SLAM Unmanned Vehicle 

This research developed a stereo vision SLAM unmanned vehicle by integrating stereo vision with 
LIDAR SLAM technology, aimed at enhancing autonomous navigation capabilities in complex 
environments. The system's hardware and software architectures were carefully crafted to ensure 

efficient performance in dynamic and unpredictable conditions. 

2.1.  Control System 
The control core of the unmanned vehicle is built around the Raspberry Pi 4B, chosen for its 
computational prowess and versatility. Equipped with a robust ARM Cortex-A72 CPU, the Raspberry 
Pi 4B efficiently handles complex SLAM computations, particularly in real-time visual data processing. 

Ubuntu 20.04 serves as the operating system, and the control system was developed using the Robot 
Operating System (ROS) framework. ROS offers a comprehensive suite of tools and libraries that 
facilitate the development and integration of diverse robotic applications, especially in SLAM, path 
planning, and autonomous navigation. 

The ORB-SLAM algorithm, recognized for its effectiveness in SLAM applications, was integrated 
into the vehicle’s control system with the assistance of ROS, enabling real-time map generation and 
localization. To overcome the challenges associated with traditional potential field methods in dynamic 

environments, our approach utilizes the grid-based potential field method developed by Jung and Kim 
[2]. Furthermore, integrating techniques such as Direct Sparse Odometry, as discussed by Engel et al. 
[9], enhances the robustness and accuracy of our SLAM implementation. 

2.2.  Data Collection 
The data collection system of the unmanned vehicle comprises stereo cameras and LIDAR, working in 

unison to deliver comprehensive environmental perception. High-resolution USB stereo cameras 
capture stereo vision data, which is utilized to derive depth information, providing accurate visual input 
for the SLAM system. These stereo cameras obtain stereo information from images and generate dense 
depth maps through stereo matching algorithms, laying the groundwork for environmental modeling. 

The N10P LIDAR further enhances the accuracy of environmental modeling by providing high-
precision point cloud data. LIDAR is particularly effective in environmental scanning, capturing 
geometric features with greater detail than visual data alone. By combining stereo cameras with LIDAR, 
the system maximizes their respective strengths, achieving precise 3D environmental modeling. 

During data collection, the RGB-D data from the stereo cameras and the point cloud data from the 
LIDAR are processed by the Raspberry Pi and fed into the SLAM system in real-time. The SLAM 
algorithm on the Raspberry Pi processes this sensor data to create a high-precision environmental map 
and continually updates the vehicle’s position information, enabling smooth navigation through 
dynamic environments. 

2.3.  Appearance 

The exterior design of the unmanned vehicle was carefully considered to ensure its adaptability for both 
indoor and outdoor use. The vehicle features a compact structure, with stereo cameras, LIDAR, and 
other sensors strategically arranged to provide optimal working views for each sensor without causing 
interference. The design not only fulfills functional requirements but also enhances the overall aesthetics 
and practicality of the system. As illustrated in Figure 1, the vehicle's layout is compact and demonstrates 
excellent environmental adaptability, ensuring the stable operation of the system. 
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Figure 1. Exterior Design of the Stereo Vision Autonomous Vehicle 

3.  Camera Calibration 

Before utilizing the cameras, it is essential to perform camera calibration to correct for image distortion 

caused by lens aberrations. The primary goal of camera calibration is to establish a mapping relationship 
from the 3D world to the 2D image plane, enabling accurate determination of the 3D geometric position 
of any point on an object's surface and its corresponding point in the image during object reconstruction 
and recognition. This process involves calculating both the intrinsic and extrinsic parameters of the 
camera. 

Before utilizing the cameras, it is essential to perform camera calibration to correct for image 
distortion caused by lens aberrations. This fundamental process involves calculating both the intrinsic 

and extrinsic parameters of the camera to ensure accurate mapping from the 3D world to the 2D image 
plane. Consistent with standard procedures in binocular vision systems, accurate calibration is essential 
for enhancing environmental perception and navigation precision [10]. 

 

Figure 2. (From left to right) Normal, Barrel Distortion, Pincushion Distortion 

Figure 2 illustrates various types of lens distortions, including normal, barrel distortion, and 
pincushion distortion. Intrinsic parameters include the focal length (fx, fy) and principal point 
coordinates (cx, cy), which define the projection relationship from 3D space to the 2D image plane. 

Correcting these distortions ensures that straight objects are represented as straight lines in the image, 
minimizing geometric errors caused by lens distortion. 

Extrinsic parameters describe the rotation and translation relationships between the camera's 
coordinate system and the world coordinate system. By solving the rotation matrix (R) and translation 
vector (T), points in the 3D world coordinate system can be transformed into the camera coordinate 
system and then projected onto the image plane using the intrinsic parameters. 
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To obtain accurate depth images, this study employed a stereo matching algorithm. This algorithm 
utilizes images captured simultaneously by two cameras, analyzing the disparity between corresponding 
points in the left and right images to calculate the depth information of objects in the scene. The key 
steps in stereo matching include image rectification and disparity calculation: 

Image Rectification: By correcting image distortion, the optical axes of the left and right cameras are 
aligned parallel, ensuring that the projection of the same object in both images appears on the same 
horizontal line. This step utilized the image calibration package in ROS, with a (9×7) checkerboard 
pattern for calibration. Figure 3 shows the image before calibration, where the obvious distortion of the 
checkerboard indicates the presence of aberration. Figure 4 shows the image after calibration, where the 
distortion has been corrected. 

 

Figure 3. Stereo Camera Image Before Calibration 

 

Figure 4. Stereo Camera Image After Calibration 

Disparity Calculation: Following image rectification, the pixels in the left and right images are 
matched using epipolar constraint methods to calculate the disparity, which is then used to deduce depth. 
Disparity minimization is achieved through an energy cost function, and the resulting depth maps 
provide essential data for 3D reconstruction. 

This camera calibration process lays the groundwork for the stereo SLAM system, ensuring the 
accuracy and stability of subsequent image processing and feature extraction. 

4.  Fundamental Concepts of Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) represent a foundational architecture in deep learning, 
particularly well-suited for handling image and video data. The primary strength of CNNs lies in their 

ability to automatically learn and extract essential features from images without requiring manual feature 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241027 

61 



 

 

engineering. This ability makes CNNs highly effective for tasks such as image classification, object 
detection, and semantic segmentation. 

4.1.  Basic Structure of CNNs 

CNNs are composed of several key components: 
Convolutional Layer: This layer applies convolutional kernels (or filters) to the input data, capturing 

local features from images. These kernels are trained to recognize edges, corners, textures, and other 
significant image features. 

Activation Function: The Rectified Linear Unit (ReLU) is commonly used as the activation function. 
ReLU introduces non-linearity into the model, allowing it to approximate more complex functions. 

Pooling Layer: This layer down-samples the feature maps produced by the convolutional layers, 
reducing the computational burden and memory requirements while improving the model's robustness 
to variations. Common pooling methods include Max Pooling and Average Pooling. 

Fully Connected Layer: In the later stages of the network, fully connected layers are employed to 
integrate the high-level features extracted by the convolutional and pooling layers, typically for 
classification or regression tasks. 

Figure 5 provides a visual representation of a Convolutional Neural Network (CNN) including 

pooling operations. It details how the various components—convolutional layers, activation functions, 
pooling layers, and fully connected layers—are organized to effectively analyze and classify image data. 

Convolution+Nonlin
ear Operations

step ：1
Convolution 

method ：SAME

3-channel 
image matrix
pixel：6×6

Average pooling

Select box size ：
2×2

pixel：6×6

Convolution and 
pooling ……

（X,X,X）

pixel：3×3 feature vectors image matrix

Fully 
connected

 

Figure 5. Convolutional Neural Network with Pooling 

4.2.  Application of CNNs in DeepLabv3+ 
The DeepLabv3+ architecture builds on the robust feature extraction capabilities of traditional CNNs 
and tailors them to the needs of modern semantic segmentation tasks. By integrating atrous (dilated) 
convolution and an encoder-decoder structure, the model effectively balances segmentation accuracy 
and computational efficiency. 

5.  Image Segmentation Based on DeepLabv3+ 

5.1.  Network Architecture and Methodology 
This study employs the DeepLabv3+ architecture for the image segmentation component, a 
sophisticated Convolutional Neural Network (CNN) designed to enhance segmentation accuracy and 

efficiency. DeepLabv3+ extends traditional CNNs by integrating atrous (dilated) convolution techniques 
with an encoder-decoder structure. This architecture is particularly adept at managing multi-scale 
features and refining feature maps to more effectively capture image details. The structure of the 
algorithm is shown in Figure 6: 
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Figure 6. Structure of the DeepLabv3+ Algorithm 

Encoder: The encoder utilizes ResNet or Xception as the backbone network for feature extraction 

and incorporates the Atrous Spatial Pyramid Pooling (ASPP) module. ASPP employs convolutional 
kernels with varying dilation rates to capture features at different scales, allowing the model to gather 
rich contextual information from the image. 

Decoder: The decoder processes high-level and low-level feature maps received from the encoder. 
Using 1x1 convolutions for dimensionality reduction followed by upsampling, the decoder generates 
high-resolution segmentation maps that align with the original input image size. This ensures that fine 
details in the image are preserved, which is crucial for accurate 3D reconstruction in SLAM applications. 

5.2.  Training Data 
To evaluate the model's performance in dynamic scenarios, this study designed a specific indoor 
experimental setup. An adult repeatedly moved within the camera’s range on the mobile robot, 
simulating the presence of dynamic objects in real-world environments. This setup was used to assess 
the model's ability to detect and exclude dynamic objects. 

The training dataset used in this experiment was based on the methodology presented by Costea et 
al. in their CVPR 2017 paper titled "Fast Boosting based Detection using Scale Invariant Multimodal 
Multiresolution Filtered Features." This dataset includes object detection tasks in various dynamic 
scenes, covering multiple target categories such as pedestrians and vehicles. The experimental results 
demonstrated that this method achieved an average precision (AP) of 83.79% in "simple" scenarios, 
70.76% in "medium" difficulty scenarios, and 64.81% in "difficult" scenarios. These outcomes indicate 
that the method is effective in detecting dynamic objects like pedestrians(see Figure 7 for a detailed 

view of precision and recall changes in pedestrian detection tasks). 

 

Figure 7. Precision and Recall Changes in Pedestrian Detection Tasks 
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Using this dataset for model training, along with precise 2D and 3D bounding box information, the 
model's detection capabilities in complex dynamic scenarios were enhanced through boosting 
techniques and multi-resolution feature extraction. A rigorous annotation process ensured the reliability 
of the data, making it suitable for both academic research and engineering applications. The model 

successfully identified and excluded dynamically moving pedestrian targets in indoor experiments, 
significantly improving the mobile robot's navigation capabilities in dynamic environments. 

5.3.  Image Segmentation 
In this study, the code was run within an Ubuntu 20.04 environment, utilizing Python 3.8 as the 
programming language and leveraging PyTorch 1.9.0 for deep learning model development and training. 

To enhance the efficiency of processing large datasets and model training, the system was equipped with 
an NVIDIA GeForce RTX 3090 GPU, utilizing CUDA 11.1 for parallel computation. The development 
process was supported by Visual Studio Code (VS Code) as the integrated development environment, 
while Jupyter Notebook was employed for documenting experiments and visualizing results, allowing 
for real-time analysis and adjustments of experimental data. Dependency management was handled via 
a requirements.txt file, ensuring the reproducibility of the project environment. 

Following the completion of model training using the KITTI dataset, a 1-minute 55-second video 

was captured using a stereo camera mounted on a mobile robot. This video was specifically designed to 
assess the performance of the trained model in a dynamic environment. The stereo camera’s depth 
information was crucial for accurately segmenting and identifying moving objects, such as pedestrians, 
in the recorded scenes. This validation step was essential in demonstrating the model’s effectiveness in 
real-world dynamic scenarios, ensuring that the mobile robot could navigate efficiently by detecting and 
excluding dynamically moving obstacles. 

Table 1 presents a comparison of images before and after segmentation at various timestamps in the 
video. The table includes the time of capture, the original images before segmentation, and the 

segmented images after applying the model. This comparison highlights the effectiveness of the model 
in improving the clarity of moving objects and distinguishing them from the background. 

Table 1. Comparison of images before and after segmentation. 

Time(MM) Before image segmentat After image segmentation 

00:35 

  
 

01:17 
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01:24 

    

01:33 

  

6.  3D Point Cloud Map Construction 

6.1.  Data Collection and Hardware Control 

While the system's hardware architecture is designed to support real-time data collection, this study 
opted to use pre-recorded RGB-D video data for constructing dense 3D point cloud maps. The video 
data, captured by a stereo camera, documents the entire movement of the mobile robot within an indoor 
setting. Using pre-recorded data ensures consistent inputs across various experiments, allowing for 
rigorous validation of the SLAM system's performance. 

The RGB-D data from the pre-recorded video is processed by the SLAM system to produce high-

precision environmental maps. By simulating real-time data collection via ROS, the system processes 
this data to construct detailed and accurate point cloud maps, which are critical for precise navigation in 
dynamic environments. 

6.2.  Image Segmentation and Point Cloud Data Fusion 
The pre-recorded RGB-D video data is input into the RTAB-Map node, where image segmentation 

techniques are applied to extract key features, such as pedestrians, from the video. These features are 
then combined with the geometric information provided by LIDAR to create an enhanced 3D point 
cloud map. Although the data is not captured in real-time, this method ensures that the segmentation and 
point cloud generation processes are both consistent and efficient, contributing to the overall accuracy 
of the SLAM system. 

6.3.  TF Transformation and Coordinate System Alignment 

A critical step in constructing dense 3D point cloud maps is ensuring that all data is aligned within a 
common coordinate system. The RGB-D data and geometric information extracted from LIDAR must 
be unified under the same coordinate system for effective processing. The ROS TF transformation node 
manages this alignment, ensuring that all data inputs are correctly aligned for map construction. 

6.4.  Dense Point Cloud Map Generation 

Once the data is aligned, the RTAB-Map node processes the fused RGB-D data as if it were real-time 
sensor input. This method generates dense point cloud maps that accurately capture both the geometric 
features and texture information of the environment. The resulting maps are robust and precise, as 
demonstrated in Figures 8 and 9, which compare the point cloud map to the actual environment. 

Table 1. (continued). 
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Figure 8. Comparison between the Point Cloud Map and Reality (1) 

 

Figure 9. Comparison between the Point Cloud Map and Reality (2) 

Through trajectory optimization and loop closure detection techniques, the generated map remains 
highly robust and accurate even when using pre-recorded video. 

7.  Conclusion 

This research presents an innovative SLAM framework that merges deep learning techniques, 
particularly CNNs, with laser-assisted stereo vision, effectively tackling the complexities of navigating 
dynamic environments. Through the precise segmentation of pedestrians and other moving entities in 
video data, and the seamless integration of this segmented data into the SLAM system, the proposed 
approach shows a marked enhancement over conventional SLAM methodologies. Experimental 
findings confirm the method’s efficacy in filtering out dynamically moving objects, which facilitates 
the creation of reliable and accurate 3D point cloud maps. 

Looking ahead, future studies will focus on refining the algorithm’s real-time capabilities and 
enhancing its robustness in environments with even greater dynamism. Moreover, integrating additional 
sensor modalities, such as thermal imaging and ultrasonic sensors, may further refine the spatial 
resolution and accuracy of the produced maps. These developments are anticipated to expand the scope 
of SLAM technology in sectors like smart logistics, service robotics, and other areas where autonomous 
navigation is crucial. 
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