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Abstract. Being easy to implement and offering faster solutions, the greedy algorithms have 

widely been used in solving combinatorial optimization problems in computer science and many 

practical applications, such as resource allocation and data compression. This paper aims at 

analyzing the definitions, theory, and application of greedy algorithms in computer science as 

well as their logic and efficacy in numerous situations. In this analysis, concepts such as the 

greedy choice property and optimal substructure are examined as essential to understanding how 

greedy algorithms operate. The provided analysis mainly assumes prior knowledge of concepts 

and problems like the Fractional Knapsack problem and the Shortest Path problem solution as 

well as some practical problems, for example, resource allocation and the exact coin change 

problem. Analytical data and real applications are used to analyze the performance of greedy 

algorithms vis-a-vis other categories, such as the dynamic programming paradigm. The results 

reveal that greedy algorithms have the potential for great efficiency while also being restricted 

by certain parameters. They are ideal in the following aspects pertaining to computational aspects, 

that is, speed, ease of implementation, and applicability to large datasets. But they do not 

necessarily promise strong optimality in certain situations. The conclusion notes that greedy 

algorithms deserve further applications when the specified conditions are met and states that the 

effectiveness of these conditions needs to be studied. 
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1.  Introduction 

1.1.  Background on greedy algorithms 

Algorithms in computer science are the building blocks of effective problem-solving strategies [1]. 

Greedy algorithms belong to the most basic algorithmic categories that utilize the “greedy strategies” 

concept, whereby a problem is solved by choosing localized optimal decisions in the hope that the 

overall optimal solution will be realized. The base idea corresponds to the choice of the optimal decision 

at each stage to gradually build up the overall best solution [1]. Albeit allowing for simplicity, greedy 

algorithms originate from combinatorial optimization and theoretical computer science discussions that 

occurred numerous decades ago [2]. They originated from the need to find solutions on how to solve 

difficult computational problems as noticed across various fields of application. When problem 

structures meet certain conditions to guarantee optimality, like optimal subproblems and greedy choice 

facilities, the greedy algorithms provide well-defined procedural frameworks for solving optimization 

challenges with optimality in the simplest ways [1]. However, it is essential to mention the shortcomings 
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because greedy heuristics are not always able to provide the optimal solutions and may, at times, stop at 

a suboptimal solution because subsequent decisions regarding further optimization depend on the 

previous decisions in some classes of problems [2]. 

1.2.  The widespread use of greedy algorithms 

Greedy algorithms have been widely applied to both traditional and modern computational sciences. For 

instance, in graph theory, greedy algorithms are used to address issues such as MST with Kruskal’s or 

Prim’s algorithms and the Shortest Path problem with Dijkstra’s algorithm [3]. In addition to this, greedy 

algorithms have been featured in solving resource allocation problems like the Fractional Knapsack 

Problem, solving the Activity Selection Problem, and data compression techniques like Huffman Coding 

to allow for storage space reduction [4]. These application areas demonstrate how the greedy algorithms 

are useful and meritorious in various domains. It could be argued that greedy algorithms do not always 

ensure globally optimal solutions regardless of the problem kind, but if the certain problem’s structure 

can be decomposed into a sequence of admissible greedy choices, then such algorithms will yield an 

optimal and efficient solution [5]. 

2.  The basis of greedy algorithms 

2.1.  The core thoughts of greedy algorithms 

The greedy algorithm follows the general idea of climbing a mountain, step by step, getting higher and 

higher with every radical change. In other words, it seeks to find the best solution iteratively [6]. This 

proves to be a conceptually simple but limited means of handling optimization challenges. Earl’s greedy 

algorithms do not specify adherence to any particular structure and are solely based on the selection of 

the “greedy strategy” [6]. This strategy must possess one of the characteristics called “no retrospect” 

that means that the state after a particular state has no influence on the states before it. From the 

standpoint of the present state, this decision is unrelated to further consequences. According to [6], 

greedy algorithms are considered the most basic and fastest approach that could provide optimal 

solutions to some outlined problems. In particular cases, finding the global optimum comes down to 

making a number of locally optimal decisions or so-called “myopic strategies” [7]. However, it is 

important to realize that a neighborhood optimum does not ensure that we get the globally optimal 

solution. Still, it often helps in deriving an estimative optimal solution [7]. As is the case with the greedy 

algorithm, every phase just looks at the current best choice for the algorithm, instead of asking whether 

this choice will be good in the future. 

This form of step-by-step optimization constitutes the basis of the functional concept of greedy 

algorithms. Despite providing conceptual convenience and computational flexibility, their design does 

not guarantee derivation of categorically best solutions for all types of problems. The selection technique 

limits inspection to present states that exclude the possibility of reconfiguring prior states, which in turn 

limits the reach of the optimal solutions guarantee to certain types of problems. Nevertheless, the 

accumulation of successively locally optimal decisions based solely on the current system state presents 

the greedy method as capable of providing approximatively optimal or precisely optimal solutions to 

well-defined optimization problems at a computational complexity that cannot be equaled by exhaustive 

assessment. This justifies their endurance as one of the basic types of algorithms. 

2.2.  Mathematical proof 

As with other algorithms, the effectiveness of the greedy algorithms can be proven mathematically under 

certain conditions. This we shall illustrate using the Activity Selection Problem, whereby the aim is to 

select the maximum number of non-overlapping activities within a given period of time. Every activity 

has its own start and finish time. A greedy strategy could imply that the chosen activity be the one with 

the earliest completion time each time a decision was to be made. 
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2.2.1.  Proof. Here, A = {a1, a2, …, an}, represent set of “n” numbers of activity having start time si 

and end time fi. A greedy algorithm schedules activities by: 

• Sort the elements in the set A in non-decreasing order of fi 

• And inserting each of the elements with the next element of the same type (ai, ai+1) into schedule S 

if si ≥ fi [1] 

Let P(n) be the proposition stating that for any set of activities, the greedy algorithm yields an optimal 

ASP schedule. We apply induction in order to prove that P(n) holds for all n. 

2.2.2.  Base case: In case n = 1, it is quite obvious that this single activity will schedule optimally. P (1) 

is true. 

Inductive hypothesis: Suppose that P(k-1) is true for some k-1 activities. 

2.2.3.  Inductive step: Let there be a set of activities A, where |A| = k If the greedy algorithm is such that 

the first activity chosen is a1 then A’ = A - {a1}. By the inductive hypothesis, the greedy algorithm 

optimally schedules A’. The union schedule of activity a1 and all activities in A’ is optimal since none 

of the A’ activities coincide with all. 

Therefore, for every n in the set of natural numbers N, (∀n ∈ N,) P(n) statement is valid based on 

the principle of mathematical induction. Q.E.D. 

The successful proof given in this paper utilizes mathematical induction to show that the greedy 

algorithm given above is capable of arriving at an optimal schedule in the context of the ASP [1]. Let 

P(n) = Greedy approach gives an optimal schedule for any activities on n. The base case is established 

for =1, because there will only be activity scheduled and this will be done optimally. Therefore, for the 

inductive hypothesis, we assume that P (k - 1) is true for k-1 activities. In the inductive step, a set A of 

k activities is taken into account. For simplicity, let A’ represent the set of activities after the first activity 

(a1) to be scheduled greedily is deleted. Therefore, the greedy activity can be seen as indicated in Table 

1 below. By the inductive hypothesis of the greedy method, the above schedule of node A’ is the 

optimum schedule. As a result of completing logical induction, the hypothesis P(n) holds for any natural 

number n, meaning that the greedy selection in nondecreasing order of finish times and insertion of pairs 

where start exceeds prior finish will provide the best solution to the ASP. This is due to the inherent 

characteristic of the selection strategy to build the best solution from some starting point step by step by 

choosing the best local solution at each step. While this guarantee can only be proven mathematically 

in specific and limited circumstances, they do assure that the best overall arrangement will be recognized, 

which is what the A* algorithm is primarily designed to do [1,2]. 

Table 1. Activity Schedule Validation. 

Activity Start Time Finish Time 

a1 1 3 

a2 2 5 

a3 0 6 

a4 5 8 

a5 3 7 

Greedy schedule: a3, a1, a5 
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3.  The logic of greedy algorithms 

3.1.  Advantages and disadvantages of greedy algorithms 

Greedy algorithms have some advantages that imply the simplicity and high performance of these 

algorithms. Their iterative, gradual strategy that leads to the global optimization by approximating local 

optimization at each stage makes sense in a quite heuristic way [6]. This simple nature facilitates its ease 

of understanding, implementation, debugging and modification, thus giving shorter development times 

than may be expected when using more complex algorithms [6]. Moreover, greedy methods usually 

indicate splendid time complexity when problem characteristics are rightly matched to a one-pass, 

myopic choice mechanism [8]. Since they do not keep track of the preceding calculations, greedy 

algorithms require the smallest amount of memory and can solve vast problem instances with basic 

computing technology within acceptable time frames. Their efficiency thus allows for the analysis of 

the large resource-intensive datasets, which might be cumbersome to other methods [8]. It is vitally 

important to remember that greedy algorithms do not guarantee the categorically best solution for all 

problems and still, they deliver outcomes that are near optimal – the solutions that are reasonably 

implementable, specifically in the case of computationally intensive problems [8]. This makes them 

suitable for a wide spectrum of practical optimization problems where nearly-optimal solution times, or 

rates of convergence, are much more important than actual identification of global optima.  

However, there are also some drawbacks to using greedy algorithms as well. Their successive 

decisions get reduced to functions of selection process and problem definition only. If these do not align 

with requisite features like optimal substructures and the greedy-choice principle, greedy algorithms 

stand to produce results that are highly sub-optimal or inefficient [10]. Consequently, Figure 1 shows 

Comparison of Greedy Algorithms with Other Optimization Techniques in details. In addition, lack of 

forward planning prevents one from identifying if early choices are still perfectly appropriate as the 

issue unfolds. Greedy algorithms do so at the expense of heuristically scanning the whole solution space 

at every selection point for the sake of computational efficiency. Though performing very well on 

particular classes of problems, greedy heuristics require good knowledge of related drawbacks for 

determining harmony with target tasks. 

  

Figure 1. Comparison of Greedy Algorithms with Other Optimization Techniques. 

Chart comparing the time complexity of greedy algorithms, dynamic programming, and backtracking 
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Figure 2. Example of a Greedy Algorithm Applied to the Fractional Knapsack Problem. 

Flowchart depicting the stages in the greedy approach for the fractional knapsack problem (Figure 

2). Combining the information presented above, it can be stated that greedy algorithms provide an 

effective instrument in solving optimization problems. It is important to state that these structures are 

easy to design, effective in their performance and useful in approximating solutions to an array of 

problems. 

3.2.  Examples of greedy algorithms in action 

In order to give a more detailed description of greedy algorithms, two problems, which are Fractional 

Knapsack and Shortest Path, are explained below. The Fractional Knapsack Problem involves selecting 

the largest value containing item set getting into a knapsack of restricted weight; here, every item has a 

unique weight and value [11]. In a greedy approach, an ‘‘item is chosen from which has the highest 

value-divided-by-weight at each step with due consideration of weight’s constraints. Although 

optimality is not ensured, this approach assembles incrementally the best solution within minimal 

deviation relative to the optimum based on locally efficient decisions. The Shortest Path Problem 

involves computing the least number of edges between two nodes in an edge-weighted graph [12]. 

Iterative graph exploration is achieved by a greedy algorithmic approach; Dijkstra’s selection at each 

step is the unvisited node with the smallest total distance from the source node. Upon reaching the 

destination, the reconstructed path represents the shortest path to travel. Both exhibit greedy algorithms 

that work by making steps of pure choices of the best local improvements to achieve approximate global 

optimal solutions. At each step, focusing exclusively on the present utility of those systems provides 

people with decisions that are not influenced by the future. Although it is not possible for greedy 

algorithms to assert categorically that other solutions are non-optimal, the factors of time efficiency, 

approximation of optimal solutions and proven optimal solutions for certain types of problems uphold 

the general applicability of greedy algorithms. What concerns their properties, these structures are 

especially appropriate for large-scale computationally oriented problems where slight imperfection is 

acceptable to achieve near optimal solutions. Exactly, greedy algorithms suitably solve problems with 

characteristics such as optimal substructures and the greed choice property. Despite such shortcomings, 

a general aim of simple solutions tends to overshadow the concomitant sub-optimality associated with 

these algorithms to qualify the greedy approach as a brute-force method of first choice.  

4.  Applications of greedy algorithms in the real world 

Greedy algorithms have vast applicability in real-life scenarios. The distribution tasks that involve 

rationed resources that have to be distributed among several competing needs are usually performed 

using greedy strategies. Other examples are CPU scheduling, mentioned before, and bandwidth 

management in networks, in which near-optimal schedules are built by choosing the highest priority 
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allocation over and over again [13]. Greedy optimization is used rather pervasively in real-life 

applications; for example, data compression. One of the most basic compression methods is Huffman 

coding, which generates efficient prefix codes for symbols in relation to the frequency by a greedy 

algorithm. Chronologically assigning short codewords to frequent symbols reduces the overall storage 

space needed [14]. Machine learning algorithms also appear with greedy thinking incorporated into their 

systems. The classification technique of decision tree learning continually picks the attribute in each 

loop that creates the “purest” divisions of subgroups and goes on subdividing the observations in that 

way until their conclusion or end branches in a prediction. This greedy construction of optimal splitting 

decisions constructs decision trees step by step and therefore improves interpretability [15]. These are 

to illustrate how greedy algorithms may be applied to various aspects of resource storage and retrieval, 

and information sorting and assessment. The efficiency of their methods and reasonable solutions 

derived from iterative improvement of solutions within local optima allow for solving many problematic 

issues of optimization maintenance in computationally intensive practical applications. When a global 

optimum cannot be determined, greedy algorithms’ blend of strong throughput with decent solution 

quality allows for a wide range of application areas for system management, for example [13-15]. Due 

to their practical, straightforward, and efficient characteristics, these are some of the most useful 

techniques for simulating optimization problems in technology, science, and other fields where optimal 

solutions may not necessarily be necessary on a global scale. 

5.  Conclusion 

Some techniques, such as the greedy algorithms, have become firmly rooted in the field of computer 

science because of the demonstrated ability of generating solutions that are approximations of the 

optimal values rapidly. These basic advantages stem from the simplicity of ideas that underlie them, 

time requirements, and the ability to iteratively choose the locally optimum decision. Even though 

greedy heuristics do not always provide global optimality, they are used because they always provide 

reasonable, approximate or optimal solution. This makes it possible to solve very large problem 

instances intractable to thin, more general exhaustive approaches. When the problems belong to well-

defined categories that can be mapped to greedy principles, we know that better solutions are guaranteed 

to bolster this strategy’s effectiveness. However, increasing compatibility with greedy algorithm 

properties, such as optimal substructure and the greedy choice property improves the solution. Moreover, 

an awareness of limitations and biases that originate from myopic vision is crucial for determining 

relevance and assessing its applicability as well as guarding against possible sub-optima. However, 

overall structural simplicity usually makes up for occasional sub-optimal solutions, thus supporting 

greed-based methods as first choices. Flexibility occurs from leverage throughout resource management, 

information processing, analytical processing, among others. It’s an essence aimed at a pragmatic 

approach at optimizing the quality of solutions and the speed of how they are delivered bridging the gap 

between the mere technicality of investigation and the specific scientific pursuit of an answer. 

Subsequently, the perpetual identification of more suitable problem domains reinvigorates the 

theoretical basis of greedy algorithms. As problems grow with technology, efficient approximate 

methods require more need as the scale increases. The long-term relevance of greedy algorithms can 

therefore be safely assumed. Despite the optimization potential of stochastic variants, the sheer concept 

and computation ease that stochastic methods afford underline their eternal uses in optimization. 
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