

The Logic and Application of Greedy Algorithms

Jierui Zhang

Chengdu Experimental Foreign Language School (west campus), Chengdu, 610213,

China

zjierui2077@gmail.com

Abstract. Being easy to implement and offering faster solutions, the greedy algorithms have

widely been used in solving combinatorial optimization problems in computer science and many

practical applications, such as resource allocation and data compression. This paper aims at

analyzing the definitions, theory, and application of greedy algorithms in computer science as

well as their logic and efficacy in numerous situations. In this analysis, concepts such as the

greedy choice property and optimal substructure are examined as essential to understanding how

greedy algorithms operate. The provided analysis mainly assumes prior knowledge of concepts

and problems like the Fractional Knapsack problem and the Shortest Path problem solution as

well as some practical problems, for example, resource allocation and the exact coin change

problem. Analytical data and real applications are used to analyze the performance of greedy

algorithms vis-a-vis other categories, such as the dynamic programming paradigm. The results

reveal that greedy algorithms have the potential for great efficiency while also being restricted

by certain parameters. They are ideal in the following aspects pertaining to computational aspects,

that is, speed, ease of implementation, and applicability to large datasets. But they do not

necessarily promise strong optimality in certain situations. The conclusion notes that greedy

algorithms deserve further applications when the specified conditions are met and states that the

effectiveness of these conditions needs to be studied.

Keywords: Greedy algorithms, shortest path, fractional knapsack problem, optimization.

1. Introduction

1.1. Background on greedy algorithms

Algorithms in computer science are the building blocks of effective problem-solving strategies [1].

Greedy algorithms belong to the most basic algorithmic categories that utilize the “greedy strategies”

concept, whereby a problem is solved by choosing localized optimal decisions in the hope that the

overall optimal solution will be realized. The base idea corresponds to the choice of the optimal decision

at each stage to gradually build up the overall best solution [1]. Albeit allowing for simplicity, greedy

algorithms originate from combinatorial optimization and theoretical computer science discussions that

occurred numerous decades ago [2]. They originated from the need to find solutions on how to solve

difficult computational problems as noticed across various fields of application. When problem

structures meet certain conditions to guarantee optimality, like optimal subproblems and greedy choice

facilities, the greedy algorithms provide well-defined procedural frameworks for solving optimization

challenges with optimality in the simplest ways [1]. However, it is essential to mention the shortcomings

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

154

because greedy heuristics are not always able to provide the optimal solutions and may, at times, stop at

a suboptimal solution because subsequent decisions regarding further optimization depend on the

previous decisions in some classes of problems [2].

1.2. The widespread use of greedy algorithms

Greedy algorithms have been widely applied to both traditional and modern computational sciences. For

instance, in graph theory, greedy algorithms are used to address issues such as MST with Kruskal’s or

Prim’s algorithms and the Shortest Path problem with Dijkstra’s algorithm [3]. In addition to this, greedy

algorithms have been featured in solving resource allocation problems like the Fractional Knapsack

Problem, solving the Activity Selection Problem, and data compression techniques like Huffman Coding

to allow for storage space reduction [4]. These application areas demonstrate how the greedy algorithms

are useful and meritorious in various domains. It could be argued that greedy algorithms do not always

ensure globally optimal solutions regardless of the problem kind, but if the certain problem’s structure

can be decomposed into a sequence of admissible greedy choices, then such algorithms will yield an

optimal and efficient solution [5].

2. The basis of greedy algorithms

2.1. The core thoughts of greedy algorithms

The greedy algorithm follows the general idea of climbing a mountain, step by step, getting higher and

higher with every radical change. In other words, it seeks to find the best solution iteratively [6]. This

proves to be a conceptually simple but limited means of handling optimization challenges. Earl’s greedy

algorithms do not specify adherence to any particular structure and are solely based on the selection of

the “greedy strategy” [6]. This strategy must possess one of the characteristics called “no retrospect”

that means that the state after a particular state has no influence on the states before it. From the

standpoint of the present state, this decision is unrelated to further consequences. According to [6],

greedy algorithms are considered the most basic and fastest approach that could provide optimal

solutions to some outlined problems. In particular cases, finding the global optimum comes down to

making a number of locally optimal decisions or so-called “myopic strategies” [7]. However, it is

important to realize that a neighborhood optimum does not ensure that we get the globally optimal

solution. Still, it often helps in deriving an estimative optimal solution [7]. As is the case with the greedy

algorithm, every phase just looks at the current best choice for the algorithm, instead of asking whether

this choice will be good in the future.

This form of step-by-step optimization constitutes the basis of the functional concept of greedy

algorithms. Despite providing conceptual convenience and computational flexibility, their design does

not guarantee derivation of categorically best solutions for all types of problems. The selection technique

limits inspection to present states that exclude the possibility of reconfiguring prior states, which in turn

limits the reach of the optimal solutions guarantee to certain types of problems. Nevertheless, the

accumulation of successively locally optimal decisions based solely on the current system state presents

the greedy method as capable of providing approximatively optimal or precisely optimal solutions to

well-defined optimization problems at a computational complexity that cannot be equaled by exhaustive

assessment. This justifies their endurance as one of the basic types of algorithms.

2.2. Mathematical proof

As with other algorithms, the effectiveness of the greedy algorithms can be proven mathematically under

certain conditions. This we shall illustrate using the Activity Selection Problem, whereby the aim is to

select the maximum number of non-overlapping activities within a given period of time. Every activity

has its own start and finish time. A greedy strategy could imply that the chosen activity be the one with

the earliest completion time each time a decision was to be made.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

155

2.2.1. Proof. Here, A = {a1, a2, …, an}, represent set of “n” numbers of activity having start time si

and end time fi. A greedy algorithm schedules activities by:

• Sort the elements in the set A in non-decreasing order of fi

• And inserting each of the elements with the next element of the same type (ai, ai+1) into schedule S

if si ≥ fi [1]

Let P(n) be the proposition stating that for any set of activities, the greedy algorithm yields an optimal

ASP schedule. We apply induction in order to prove that P(n) holds for all n.

2.2.2. Base case: In case n = 1, it is quite obvious that this single activity will schedule optimally. P (1)

is true.

Inductive hypothesis: Suppose that P(k-1) is true for some k-1 activities.

2.2.3. Inductive step: Let there be a set of activities A, where |A| = k If the greedy algorithm is such that

the first activity chosen is a1 then A’ = A - {a1}. By the inductive hypothesis, the greedy algorithm

optimally schedules A’. The union schedule of activity a1 and all activities in A’ is optimal since none

of the A’ activities coincide with all.

Therefore, for every n in the set of natural numbers N, (∀n ∈ N,) P(n) statement is valid based on

the principle of mathematical induction. Q.E.D.

The successful proof given in this paper utilizes mathematical induction to show that the greedy

algorithm given above is capable of arriving at an optimal schedule in the context of the ASP [1]. Let

P(n) = Greedy approach gives an optimal schedule for any activities on n. The base case is established

for =1, because there will only be activity scheduled and this will be done optimally. Therefore, for the

inductive hypothesis, we assume that P (k - 1) is true for k-1 activities. In the inductive step, a set A of

k activities is taken into account. For simplicity, let A’ represent the set of activities after the first activity

(a1) to be scheduled greedily is deleted. Therefore, the greedy activity can be seen as indicated in Table

1 below. By the inductive hypothesis of the greedy method, the above schedule of node A’ is the

optimum schedule. As a result of completing logical induction, the hypothesis P(n) holds for any natural

number n, meaning that the greedy selection in nondecreasing order of finish times and insertion of pairs

where start exceeds prior finish will provide the best solution to the ASP. This is due to the inherent

characteristic of the selection strategy to build the best solution from some starting point step by step by

choosing the best local solution at each step. While this guarantee can only be proven mathematically

in specific and limited circumstances, they do assure that the best overall arrangement will be recognized,

which is what the A* algorithm is primarily designed to do [1,2].

Table 1. Activity Schedule Validation.

Activity Start Time Finish Time

a1 1 3

a2 2 5

a3 0 6

a4 5 8

a5 3 7

Greedy schedule: a3, a1, a5

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

156

3. The logic of greedy algorithms

3.1. Advantages and disadvantages of greedy algorithms

Greedy algorithms have some advantages that imply the simplicity and high performance of these

algorithms. Their iterative, gradual strategy that leads to the global optimization by approximating local

optimization at each stage makes sense in a quite heuristic way [6]. This simple nature facilitates its ease

of understanding, implementation, debugging and modification, thus giving shorter development times

than may be expected when using more complex algorithms [6]. Moreover, greedy methods usually

indicate splendid time complexity when problem characteristics are rightly matched to a one-pass,

myopic choice mechanism [8]. Since they do not keep track of the preceding calculations, greedy

algorithms require the smallest amount of memory and can solve vast problem instances with basic

computing technology within acceptable time frames. Their efficiency thus allows for the analysis of

the large resource-intensive datasets, which might be cumbersome to other methods [8]. It is vitally

important to remember that greedy algorithms do not guarantee the categorically best solution for all

problems and still, they deliver outcomes that are near optimal – the solutions that are reasonably

implementable, specifically in the case of computationally intensive problems [8]. This makes them

suitable for a wide spectrum of practical optimization problems where nearly-optimal solution times, or

rates of convergence, are much more important than actual identification of global optima.

However, there are also some drawbacks to using greedy algorithms as well. Their successive

decisions get reduced to functions of selection process and problem definition only. If these do not align

with requisite features like optimal substructures and the greedy-choice principle, greedy algorithms

stand to produce results that are highly sub-optimal or inefficient [10]. Consequently, Figure 1 shows

Comparison of Greedy Algorithms with Other Optimization Techniques in details. In addition, lack of

forward planning prevents one from identifying if early choices are still perfectly appropriate as the

issue unfolds. Greedy algorithms do so at the expense of heuristically scanning the whole solution space

at every selection point for the sake of computational efficiency. Though performing very well on

particular classes of problems, greedy heuristics require good knowledge of related drawbacks for

determining harmony with target tasks.

Figure 1. Comparison of Greedy Algorithms with Other Optimization Techniques.

Chart comparing the time complexity of greedy algorithms, dynamic programming, and backtracking

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

157

https://www.geeksforgeeks.org/greedy-best-first-search-algorithm/

Figure 2. Example of a Greedy Algorithm Applied to the Fractional Knapsack Problem.

Flowchart depicting the stages in the greedy approach for the fractional knapsack problem (Figure

2). Combining the information presented above, it can be stated that greedy algorithms provide an

effective instrument in solving optimization problems. It is important to state that these structures are

easy to design, effective in their performance and useful in approximating solutions to an array of

problems.

3.2. Examples of greedy algorithms in action

In order to give a more detailed description of greedy algorithms, two problems, which are Fractional

Knapsack and Shortest Path, are explained below. The Fractional Knapsack Problem involves selecting

the largest value containing item set getting into a knapsack of restricted weight; here, every item has a

unique weight and value [11]. In a greedy approach, an ‘‘item is chosen from which has the highest

value-divided-by-weight at each step with due consideration of weight’s constraints. Although

optimality is not ensured, this approach assembles incrementally the best solution within minimal

deviation relative to the optimum based on locally efficient decisions. The Shortest Path Problem

involves computing the least number of edges between two nodes in an edge-weighted graph [12].

Iterative graph exploration is achieved by a greedy algorithmic approach; Dijkstra’s selection at each

step is the unvisited node with the smallest total distance from the source node. Upon reaching the

destination, the reconstructed path represents the shortest path to travel. Both exhibit greedy algorithms

that work by making steps of pure choices of the best local improvements to achieve approximate global

optimal solutions. At each step, focusing exclusively on the present utility of those systems provides

people with decisions that are not influenced by the future. Although it is not possible for greedy

algorithms to assert categorically that other solutions are non-optimal, the factors of time efficiency,

approximation of optimal solutions and proven optimal solutions for certain types of problems uphold

the general applicability of greedy algorithms. What concerns their properties, these structures are

especially appropriate for large-scale computationally oriented problems where slight imperfection is

acceptable to achieve near optimal solutions. Exactly, greedy algorithms suitably solve problems with

characteristics such as optimal substructures and the greed choice property. Despite such shortcomings,

a general aim of simple solutions tends to overshadow the concomitant sub-optimality associated with

these algorithms to qualify the greedy approach as a brute-force method of first choice.

4. Applications of greedy algorithms in the real world

Greedy algorithms have vast applicability in real-life scenarios. The distribution tasks that involve

rationed resources that have to be distributed among several competing needs are usually performed

using greedy strategies. Other examples are CPU scheduling, mentioned before, and bandwidth

management in networks, in which near-optimal schedules are built by choosing the highest priority

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

158

allocation over and over again [13]. Greedy optimization is used rather pervasively in real-life

applications; for example, data compression. One of the most basic compression methods is Huffman

coding, which generates efficient prefix codes for symbols in relation to the frequency by a greedy

algorithm. Chronologically assigning short codewords to frequent symbols reduces the overall storage

space needed [14]. Machine learning algorithms also appear with greedy thinking incorporated into their

systems. The classification technique of decision tree learning continually picks the attribute in each

loop that creates the “purest” divisions of subgroups and goes on subdividing the observations in that

way until their conclusion or end branches in a prediction. This greedy construction of optimal splitting

decisions constructs decision trees step by step and therefore improves interpretability [15]. These are

to illustrate how greedy algorithms may be applied to various aspects of resource storage and retrieval,

and information sorting and assessment. The efficiency of their methods and reasonable solutions

derived from iterative improvement of solutions within local optima allow for solving many problematic

issues of optimization maintenance in computationally intensive practical applications. When a global

optimum cannot be determined, greedy algorithms’ blend of strong throughput with decent solution

quality allows for a wide range of application areas for system management, for example [13-15]. Due

to their practical, straightforward, and efficient characteristics, these are some of the most useful

techniques for simulating optimization problems in technology, science, and other fields where optimal

solutions may not necessarily be necessary on a global scale.

5. Conclusion

Some techniques, such as the greedy algorithms, have become firmly rooted in the field of computer

science because of the demonstrated ability of generating solutions that are approximations of the

optimal values rapidly. These basic advantages stem from the simplicity of ideas that underlie them,

time requirements, and the ability to iteratively choose the locally optimum decision. Even though

greedy heuristics do not always provide global optimality, they are used because they always provide

reasonable, approximate or optimal solution. This makes it possible to solve very large problem

instances intractable to thin, more general exhaustive approaches. When the problems belong to well-

defined categories that can be mapped to greedy principles, we know that better solutions are guaranteed

to bolster this strategy’s effectiveness. However, increasing compatibility with greedy algorithm

properties, such as optimal substructure and the greedy choice property improves the solution. Moreover,

an awareness of limitations and biases that originate from myopic vision is crucial for determining

relevance and assessing its applicability as well as guarding against possible sub-optima. However,

overall structural simplicity usually makes up for occasional sub-optimal solutions, thus supporting

greed-based methods as first choices. Flexibility occurs from leverage throughout resource management,

information processing, analytical processing, among others. It’s an essence aimed at a pragmatic

approach at optimizing the quality of solutions and the speed of how they are delivered bridging the gap

between the mere technicality of investigation and the specific scientific pursuit of an answer.

Subsequently, the perpetual identification of more suitable problem domains reinvigorates the

theoretical basis of greedy algorithms. As problems grow with technology, efficient approximate

methods require more need as the scale increases. The long-term relevance of greedy algorithms can

therefore be safely assumed. Despite the optimization potential of stochastic variants, the sheer concept

and computation ease that stochastic methods afford underline their eternal uses in optimization.

References

[1] Kleinberg, J., Tardos, E. (2015). Algorithm design. Addison-Wesley.

[2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms (4th

ed.). MIT Press.

[3] Skiena, S. S. (2020). The algorithm design manual (3rd ed.). Springer.

[4] Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2016). Algorithms. McGraw-[5] Kleinberg,

J., & Tardos, E. (2015). Algorithm design. Addison-Wesley.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

159

[5] Feige, U. (2016). On maximizing welfare when utility functions are subadditive. SIAM Journal

on Computing, 39(1), 122-142.

[6] Lee, C. P. (2014). Beyond self-sufficiency: A capacity-based classification of greedy algorithms.

Theoretical Computer Science, 541, 44-59.

[7] Williamson, D. P., & Shmoys, D. B. (2015). The design of approximation algorithms. Cambridge

University Press.

[8] Coffman, E. G., Bruno, J. L., & Rivest, R. L. (2016). Computer and job-shop scheduling. SIAM

Review, 18(3), 360-378.

[9] Mirrokni, V., & Vondrák, J. (2016). The complexity of nonmonotone submodular maximization.

In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pp.

1128-1137.

[10] Kleinberg, J., Tardos, E., & Papadimitriou, C. H. (2015). Algorithm design. Addison-Wesley.

[11] Iyer, R. K., & Bilmes, J. (2014). Algorithms for approximate minimization of L1 and L∞ mixture

losses. In Advances in Neural Information Processing Systems, pp. 635-643.

[12] Park, H. S., & Shim, K. (2016). Parallel greedy algorithms for maximum weighted matching in

general graphs. Theoretical Computer Science, 609, 336-348.

[13] Garey, M. R., & Johnson, D. S. (2015). Computers and intractability: A guide to the theory of

NP-completeness. W. H. Freeman.

[14] Lattanzi, S., Moseley, B., Suri, S., & Vassilvitskii, S. (2014, September). Filtering: a method for

solving graph problems in mapreduce. In International Symposium on Distributed Computing.

Springer, Cham, pp. 85-96.

[15] Ahlswede, R., & Winter, A. (2016). Strong converse for identification via quantum channels.

IEEE Transactions on Information Theory, 48(3), 569-579.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/82/20241110

160

