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Abstract. In the field of 5G communications, the utilization of Massive MIMO has significantly 

improved the spectral efficiency. However, signal detection involves large-scale matrix 

inversion, which is computationally intensive. Traditional techniques for linear detection, such 

as Zero Forcing and Minimum Mean Square Error, struggle to effectively reduce computational 

complexity. Therefore, this paper introduces three methods to mitigate the complexity in signal 

detection: the Alternating Direction Method of Multipliers for conditions where the base stations’ 

quantities are nearly equivalent to the users’ quantities, the Neumann series expansion method 

that replaces matrix inversion, and iterative methods that approximate the true value through 

iterative updates. Future work should focus on optimizing the iterative expressions and 

incorporating tools such as deep learning to further reduce computational complexity and 

accurately retrieve the signal values. 
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1.  Introduction 

As a cornerstone of the fourth generation (4G) and a critical component of the fifth generation (5G) 

standards, Long Term Evolution (LTE) has been formalized by the 3rd Generation Partnership Project 

(3GPP) to meet the high demands of modern mobile communication systems. Leveraging Orthogonal 

Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO), LTE offers 

numerous advantages such as higher system efficiency, lower latency, and a unified network architecture 

[1-2]. MIMO, a core technology in 5G wireless communication, utilizes multiple antennas for 

simultaneous data transmission and reception, enabling the concurrent transmission of multiple data 

streams over the same time and frequency resources, thereby enhancing data processing efficiency, 

spectral efficiency, and connection reliability [3-4]. 

However, MIMO also presents challenges, primarily due to interference. When multiple signals are 

transmitted across multiple antennas, mutual interference can occur, negatively impacting performance. 

Environmental factors also affect MIMO performance. Typically, matrix inversion is required to resolve 

received signals, and this process is exceedingly complex for larger matrices, introducing high 

computational complexity. Traditional methods for solving received signals each have their strengths 

and weaknesses. The Maximum Likelihood (ML) method searches all possible combinations of 

transmitted signal vectors to find the one that best matches the received signal under the given channel 

matrix. While highly accurate, the computational complexity increases exponentially with the dimension 
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of the vector, making it impractical for high-dimensional matrices and vectors [5]. The Sphere Decoding 

(SD) method searches for the optimal solution within a spherical region centered on the received signal 

with a specified radius, reducing the search space while maintaining high accuracy. Nonetheless, it still 

heavily relies on the channel matrix [6]. Due to the high complexity of nonlinear detection methods, 

linear detection methods are often preferred. The Zero-Forcing (ZF) method seeks a linear 

transformation to directly solve for the transmitted signal at the receiver in the absence of noise. 

However, ZF performance degrades significantly when the condition number of the channel 

transmission matrix is high [7]. The MMSE technique aims to minimize the mean square error for signal 

estimation by considering both interference and noise, providing better stability. Yet, MMSE involves 

large-scale matrix inversion and is highly dependent on the channel, presenting several practical 

limitations [8]. 

In this paper, we analyze several typical methods and their circuit architectures for solving detection 

signals in MIMO systems. Based on the detection algorithms and circuit structures, we categorize them 

into three types: the ADMM method [9], the Neumann Series (NS) method [10-14], and iterative 

methods [15-19]. The ADMM method decomposes a complex optimization problem into more 

manageable subproblems and iteratively updates them in an alternating fashion to gradually approach 

the optimal solution, making it suitable for scenarios where the base stations’ quantities are nearly 

equivalent to the users’ quantities. The NS method approximates the inverse of a matrix by its series 

expansion, thus reducing the computational complexity associated with direct matrix inversion and 

approximating the signal to be detected. For its circuit architecture, it usually involves parallel operations 

of matrix addition and multiplication. The iterative method consists of three components: an iterative 

expression, an initial value, and a step size. By setting different values for these components, various 

iterative methods can be derived and applied to different scenarios. Due to iterative calculations, its 

circuit architecture is generally more complex, involving numerous adders, multipliers, and storage 

modules. 

The rest of the paper is organized as follows: Section II presents a concise introduction to the 

preliminaries of Massive MIMO and traditional linear signal detection methods. Section III describes 

ADMM used in MIMO and its VLSI architecture. The detailed NS method and iterative methods are 

proposed in Section IV and V respectively, with corresponding circuit architecture. In Section VI, the 

final conclusions are presented. 

2.  Preliminaries 

2.1.  Massive MIMO uplink system model  

In an uplink multi-user MIMO (MU-MIMO) system, the base station (BS) is outfitted with N antennas, 

which simultaneously serve M users at the user end. Typically, we have N ≥ M. For each user at the 

user end, the transmitted information is encoded into a transmission vector s,s = [s1, s2, … , sM]. By 

modeling s, we can derive its linear expression in a wireless MIMO system, as shown below: 

 y = Hs + n  (1) 

where y = [y
1
, y

2
, … , y

N
] ∈ ℂN denotes the signal vector received at the BS, H ∈ ℂN×M denotes the 

Rayleigh flat-fading channel matrix and n ∈ ℂN represents the additive white Gaussian noise (AWGN) 

characterized by a zero mean and a specified variance. 

By utilizing the known received signal y at the base station and the known channel matrix H, we 

can solve for the transmitted signal s. 

2.2.  Linear detection methods 

For massive MIMO, traditional techniques for linear signal detection include ZF and MMSE. The ZF 

method employs the pseudo-inverse of the channel matrix to eliminate multi-user interference. By using 

pre-processing and post-processing matrices, the interference signals are forced to zero, thereby 

achieving the decoupling of user signals. 
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In the expression, ZF does not consider the noise vector n. As a consequence, the equalization of 

transmitted vector s could be updated as: 

   sZF = Hty = (HHH)
−1

HHy  (2) 

where Ht  denote the pseudo-inverse of H , HH denote the conjugate transpose of H , which is 

tantamount to inverting the Gram matrix, namely GZF = HHH. 

In the MMSE method, we first perform channel estimation using pilot signals to attain the channel 

matrix H. Subsequently, in accordance with the channel matrix and noise variance σ2, we compute the 

receive matrix W which aims to minimize the mean square error between the received signals and the 

transmitted signals. Finally, using the received signal y and the receive matrix W, we obtain the 

recovered transmitted signal sMMSE, which is expressed as follows: 

  sMMSE = (HHH + σ2IA)
−1
HHy  (3) 

where IA denote the A × A identity matrix. In MMSE method, the Gram matrix can be modified with 

the introduction of noise varianceσ, namely GMMSE = HHH + σ2IA. 

3.  ADMM-Based Infinity-Norm Detection 

3.1.  The signal detection algorithm 

The ADMM is an iterative algorithm employed for solving constrained optimization problems. It is 

frequently utilized in convex optimization problems, which are defined by a convex constraint set and 

a convex objective function. The ADMM algorithm functions by decomposing the convex optimization 

problem into a series of subproblems. and alternately updating the variables to progressively approach 

the optimal solution. 

The ADMM problem is scaled and can be expressed as: 

  

sk+1 = arg min
s
{f(s) +

ρ

2
∥ s − zk + uk ∥2

2}

zk+1 = ∏ (C sk+1 + uk)

uk+1 = uk + sk+1 − zk+1

 (4) 

where u is the scaled dual variable and ∥ s ∥2 represent the l2-norm of vector s. Supposed that v =

sk+1 + uk, then ∏ (v)C  can be formulated as an equation: ∏ (v)C = arg min
z
{g(z) +

ρ

2
∥ z − v ∥2

2} [20]. 

By introducing the infinity-norm, and during the initial phase of the ADMM iteration process, under 

the condition of fixing z, we obtain the result of minimizing s by taking the partial derivative of the 

corresponding augmented Lagrangian with respect to s and setting the partial derivative to zero. The 

expression is: 

     ŝ = (HHH + βI)
−1
(HHy + β(z − λ))  (5) 

where variable λ is the scaled dual variable that corresponds to the constraintz = s, and β > 0 is a 

regularization parameter chosen appropriately. 

In this expression, the Gram matrix could be updated as GADMM = HHH + βIand yMF = HHymeans 

a matched filter. 

Since the ADMM method involves decomposing a large optimization task into multiple sub-tasks 

and solving these sub-tasks, it is only suitable for scenarios where the base station antennas’ quantities 

are nearly equivalent to the users’ quantities. When the base station antennas’ quantities significantly 

exceed the users’ quantities, the results become less accurate. 
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3.2.  VLSI architecture 

In this section, we propose an ADMM-based infinite norm circuit architecture, which is primarily 

divided into two parts: the vector multiplication computation unit and the matched filter update unit. 

The detailed implementation process is described as follows. 

Firstly, the vector multiplication computation unit (VM unit) is designed to minimize the variable s 

in the algorithm. The architecture of this module is illustrated in Figure 1 and primarily consists of 

complex multipliers and adder trees. In the preliminary stage, the VM unit calculates the matched filter 

(MF) and stores the resulting data in a register array. Concurrently, the matrix H is retained within a 

conventional cell-based memory structure, and the L̃ which denotes the lower triangular matrix is stored 

in another standard cell-based triangular memory [21]. Subsequently, the matrix L̃  is utilized to 

calculate L̃yMF with the results being stored in a temporary register array t. The following operation 

involves performing the product between t and d̃. The lower triangular memory is read to compute L̃
H

t, 

yielding the ŝ for different users, which constitutes the final output of the VM module. 

 

Figure 1. Architecture of VM unit [9]. 

The second part is the MF update unit (MFU unit), which is responsible for minimizing z and 

updating λ. The architecture is shown in Figure 2. The initial value of λ is set to zero and stored in a 

register. The Proj module compares λi and ŝi, producing ẑ as the output. The difference between ẑ 

and ŝi, scaled by the coefficient γ, is held in a register. The next state of λi+1 is obtained by adding λi 

and the value γ(ŝi − ẑ) stored in the register. The difference between λi+1 and ẑ, multiplied by the 

parameter β, is stored in a register. This value is then added to the y
i
MFoutput to produce the final result, 

denoted as y
i
u. The value of y

i
u is fed back into the VM unit for subsequent iterations. 

 

Figure 2. Architecture of MFU unit [9]. 
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4.  Neumann Series Method 

The NS serves as an expansion method for approximating the inverse or pseudo-inverse of a matrix. 

This approach is highly effective in large-scale MIMO systems and other applications requiring efficient 

linear detection. The fundamental idea is to represent the matrix inverse as the sum of a convergent 

infinite series, thereby circumventing the significant computational burden of direct matrix inversion. 

4.1.  Detection algorithm 

For basic NS method, if the receive matrix W is nearly equivalent to a matrix X which is invertible, 

namely: 

        lim
n→∞

(I − X−1W)
n
= 0  (6) 

then the inversion of matrix W can be expressed with the initial k terms of the Neumann series. As a 

consequence, the k-term approximation of the matrix W−1 can be obtained: 

                    W−1 ≈ ∑ (I − X−1W)
nk−1

n=0 X−1  (7) 

To ensure the convergence of Equation (7), the eigenvalues of matrix (I − X−1W) must satisfy the 

condition that the absolute value of the largest eigenvalue λ is less than 1. 

Given that W is diagonally dominant, it can be decomposed as W = D + E, where D represents 

the main diagonal of W and E denotes the off diagonal part of W. We consider X = D, then Equation 

(7) can be reformulated as follows: 

                    𝑾−1 = ∑ (−𝑫−1𝑬)
𝒏𝒌−𝟏

𝒏=𝟎 𝑫−1  (8) 

Additionally, there are many expands on its applications. Firstly, in Gauss-Seidel Method, the new 

initial solution s(0) could be replaced by the first 2 terms of NSE, namely s(0) = W2
−1yMF = D−1 −

D−1ED−1yMF.   

Furthermore, in specific applications, choosing solely the diagonal elements might lead to a slower 

convergence rate of the matrix series or potentially cause it to diverge. Therefore, adjustments are 

necessary. Typically, a tridiagonal matrix can be used in place of a diagonal matrix, and combined with 

the NS for computation. Consequently, the matrix X can be updated as X = diag
0
(Z) + ∑ diag

l
(Z)

N0ff

l=1 , 

where N0ff denotes the total count of off-diagonal and main diagonal elements, including the main 

diagonal elements, and diag
l
(Z) has the same dimensions as Z like: 

                    [𝐝𝐢𝐚𝐠𝐥(𝐙)]𝐢,𝐣 = {
𝐙𝐢,𝐣, 𝐢𝐟|𝐢 − 𝐣| = 𝐥

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
  (9) 

4.2.  VLSI architecture 

For basic NS method, we assume M = −D−1E and N = D−1, then the architecture is shown in Figure 

3. After the matrix H passes through a systolic array in a lower triangular configuration, it is added to 

the product of N0 and the identity matrix I. The inverse of this sum is then taken to obtain D−1, which 

we denote as N. By taking the negative of D−1 and multiplying it with E, we obtain M. Both N and 

M are then fed into subsequent modules for further computations. 
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Figure 3. Architecture of the basic Neumann series method [11]. 

In the GS method utilizing Neumann series, the circuit architecture contains several components: the 

preprocessing unit, the GS unit, the NSE unit, and subsequent computation units, shown in figure 4. In 

the preprocessing module, calculations of yMF , GH , and LH  are performed. In the GS module, 

computations are carried out according to the GS algorithm. In the NSE module, the matrix D is first 

inverted, then negated, and multiplied by E. The resulting product is then multiplied by D−1 and finally 

assigned to s(0) for subsequent computations. 

 

Figure 4. Architecture of Neumann series in Gauss-Seidel Method [12]. 

In the context of using Neumann series for tridiagonal matrices, additional computations and storage 

for certain elements on the diagonal are incorporated beyond the general calculations mentioned earlier. 

The schematic representation of this process is illustrated in Figure 5. 

 

Figure 5. Architecture of Neumann series incorporated in tridiagonal matrices [13]. 
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5.  Iterative Method 

In the application of MIMO systems, complex environments are often encountered, wherein various 

iterative methods reveal their superiority. Iterative methods exhibit excellent numerical stability and can 

utilize different iterative expressions, initial values, and step sizes for signal detection under diverse 

conditions, thereby ensuring high accuracy. 

5.1.  Iterative algorithm 

In this paper, we will introduce two representative iterative algorithms: the quasi-Newton family 

algorithms and the Stair Matrix-Based Gauss-Seidel method. 

Among the quasi-Newton family algorithms, one with relatively low computational complexity is 

the Barzilai-Borwein (BB) method [22]. By refining this method, we can derive the following iterative 

expression:  

                   𝒔𝒌+𝟏 = 𝒔𝒌 −
(𝑨𝒅𝒌⋅𝒅𝒌)

(𝒅𝒌⋅𝒅𝒌)
𝒈𝒌  (10) 

in which sk is the outcome of the k-th iteration of the transmitted signal, dk represents the search 

direction, and A stands for the Hessian matrix. 

In addition, another commonly used iterative method for signal detection is the Stair Matrix Based 

Gauss-Seidel Method. The initial value is set to ŝ(0) = S−1ŝ
MF

, where S is the stair matrix shown in 

figure 6. 

 

Figure 6. The stair matrix [18]. 

The iterative expression of this method is given by 

        𝒔̂𝒕 = 𝑺−𝟏 ((𝑺 − 𝑮)𝒔̂𝒕−𝟏 + 𝒔̂𝑴𝑭)  (11) 

where G = D + L + R, D represents the diagonal elements, L denotes the lower triangular elements, 

and R  represents the upper triangular elements. This iterative expression reduces computational 

complexity and effectively approximates the true solution. 

5.2.  VLSI architecture 

In the QN iterative algorithm, the circuit architecture is fundamentally segmented into two components: 

the preprocessing module and the iterative module, as illustrated in Figure 7. In the preprocessing 

module, the Matched Filter, Gram Matrix, and Noise Power are calculated and then passed to the 

iterative module. Within the iterative module, the values of s , g , and d  are iteratively updated 

according to the iterative expression until they approximate the true solution. 
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Figure 7. Architecture of QN iterative method [15]. 

In the Stair Matrix Based Gauss-Seidel Method, the matrices S, S − G, and Matched Filter are 

computed and processed before being passed into the Multiplier Array and Adder Tree modules. Finally, 

the final result is output, as illustrated in Figure 8. 

 

Figure 8. Architecture of Stair Matrix Based Gauss-Seidel Method [18]. 

6.  Analysis 

Each of the aforementioned signal detection methods has its own advantages and disadvantages, which 

will be specifically analyzed below. 

The ADMM method decomposes large convex optimization problems into several smaller 

subproblems, solving these smaller subproblems to obtain the final result. It has the following 

characteristics: 1) It converges quickly when the number of base station antennas is close to the number 

of users. 2) It is relatively easy to implement and suitable for multi-signal processing tasks. 3) For non-

convex optimization problems, it may converge to a local optimum rather than a global optimum. The 

NS expansion method reduces the complexity associated with directly inverting a matrix by converting 

the matrix inversion into solving a series expansion of the matrix. It has the following characteristics: 1) 

It lowers computational complexity by replacing direct matrix inversion with the first few terms of the 

matrix series. 2) The algorithm is relatively simple to implement and applicable to various circuits. 3) 

The convergence conditions are restrictive: the effectiveness of the NS expansion depends on the 

spectral radius of the matrix being less than 1. If this condition is not met, the series may not converge, 

thus affecting the method's applicability. Iterative methods approximate the true solution by 

continuously updating intermediate values. They have the following characteristics: 1) Accuracy can be 
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improved by increasing the number of iterations, meeting the requirements of various signal detection 

environments. 2) Flexibility: iterative methods can adjust parameters such as the iterative expression, 

initial values, and step sizes based on different use cases, making them applicable to a wide range of 

scenarios. 3) Iterative methods require storing a large number of intermediate values, necessitating high 

computational resources and placing higher demands on the implementation circuit. 

For signal detection, we believe that future improvements can be made by combining the Neumann 

series expansion with iterative methods. By using the first few terms of the NS as the initial values for 

the iterative method, we can ensure high performance while maintaining acceptable computational 

complexity, thereby achieving better system performance for signal detection. 

7.  Conclusion  

In this paper, we classify and introduce three methods and their circuit structures used to reduce 

computational complexity in signal detection. We also discuss typical methods for lowering 

computational complexity during signal detection and identify suitable detection algorithms and their 

circuit architectures for different usage conditions. In future research, we can focus on integrating the 

NS expansion method with iterative methods. By setting the initial values for the iteration as the first 

few terms of the Neumann series expansion, we aim to reduce complexity and improve performance. 

Additionally, relevant simulations and validations will be conducted to verify the effectiveness of this 

approach. 
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