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Abstract. In dynamic environments, robot path planning and obstacle avoidance are critical 

tasks, especially in applications such as autonomous driving, industrial automation, and mobile 

robotics. These tasks are inherently challenging due to the unpredictability of the environment 

and the need for real-time decision-making. This paper seeks to address these challenges by 

developing and analyzing both traditional and optimized models for robot navigation. The initial 

model utilizes a basic Q-learning algorithm, which provides a straightforward approach to 

learning from the environment but often struggles with the complexity of dynamic scenarios. To 

this end, an optimized model is developed that combines the Double Deep Q-Learning algorithm 

(Double DQN) in conjunction with heuristic strategies. The research employs the MATLAB 

Reinforcement Learning Toolbox to implement and train these models, and utilizes a simulated 

environment with dynamic obstacles as a testing site. The simulation generates the necessary 

data to allow for comprehensive testing and evaluation of the models’ performance. The results 

show that the optimized model greatly exceeds the initial model in terms of path planning 

efficiency and obstacle avoidance capabilities, and that the combination of advanced 

reinforcement learning techniques and heuristic strategies is extremely important for enhancing 

the performance and reliability of robotic systems in complex, dynamic environments, offering 

valuable insights for future applications in various fields of robotics. 

Keywords: Path planning, Obstacle Avoidance, Deep Reinforcement Learning, Double DQN, 

MATLAB. 

1.  Introduction 

Techniques for path planning and obstacle avoidance have significant potential for application in a 

variety of areas, including autonomous driving, unmanned aerial vehicle (UAV) control, and industrial 

robotics. However, the development of effective and dependable path planning and obstacle avoidance 

techniques in complex and evolving environments represents a significant and ongoing challenge. This 

study aims to address the challenges posed by dynamic and unpredictable environments, whereas 

traditional methods often fall short in terms of adaptability and efficiency [1][2]. In this paper, the 

efficacy of algorithms for efficient path planning and obstacle avoidance in dynamic environments is 

explored by comparing the traditional Q-Learning method and the optimized Double DQN method. 

Through the experimental analysis, the advantages of the optimized model in complex dynamic 
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environments are verified. Specifically, this study indicates that the performance of robotic systems in 

real applications can be significantly improved by combining heuristic strategies with advanced 

reinforcement learning techniques. Therefore, the paper presents the design of two experimental systems: 

the initial model and the optimization model. The initial model employs the fundamental Q-Learning 

method, whereas the optimization model integrates the dual DQN algorithm and heuristic policies. The 

performance advantages and disadvantages of the two models are assessed through a comparison of 

their training and testing outcomes in an identical environment. The research adheres to a meticulous 

experimental design to ensure that the results are statistically significant and reproducible. Furthermore, 

the research is conducted in a MATLAB environment, leveraging the Reinforcement Learning Toolbox 

to implement and train the models. 

2.  Literature Review 

Techniques for path planning and obstacle avoidance are important topics in mobile robot research. 

These technologies are critical for the autonomous operation of robots, enabling them to navigate 

through complex environments without human intervention. In recent years, the development of deep 

learning technology has led to a growing interest in the application of deep reinforcement learning in 

path planning and obstacle avoidance. Traditional methods, such as A* algorithm and Dijkstra’s 

algorithm, despite their effectiveness in static environments, often struggle with dynamic changes and 

require extensive computational resources [3][4]. In contrast, deep reinforcement learning optimizes 

path selection strategies through interaction with the environment, with advantages such as strong 

adaptability and high learning efficiency. Reinforcement learning allows agents to learn optimal 

behaviors through trial and error, leveraging rewards and penalties to guide their decisions. Common 

methods in path planning and obstacle avoidance include DQN, Double DQN, and their variants, which 

have shown promise in addressing the limitations of traditional approaches [5][6]. Heuristic strategies 

combine the advantages of traditional path planning methods, thus effectively improving the learning 

efficiency and the path planning effect of the model by guiding the learning process. The combination 

of domain-specific knowledge and heuristic strategies allows for a significant reduction in the search 

space and an increase in convergence speed. This approach is particularly advantageous in complex 

environments where purely data-driven methods may necessitate extensive training to attain satisfactory 

performance [7][8]. 

3.  Methodology 

3.1.  Experimental System Design 

The experimental system consists of an initial model, which adopts the basic Q-Learning approach, and 

an optimized model, which combines a Double DQN algorithm and a heuristic strategy, as shown in 

Figure 1. Both models are implemented in the MATLAB environment, leveraging the capabilities of the 

Reinforcement Learning Toolbox for algorithm development, training, and evaluation. The 

Reinforcement Learning Toolbox in MATLAB provides a comprehensive array of features, including 

model training, debugging, and performance assessment, so as to facilitate the development and 

optimization of intricate reinforcement learning algorithms. As a result, this design allows for a 

systematic comparison of the traditional Q-Learning approach with the advanced method integrating 

Double DQN and heuristic strategies. Furthermore, it evaluates their performance in a variety of 

environments in terms of learning efficiency, strategy optimization, and adaptability to environmental 

changes.. 
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Figure 1. Algorithm Double DQN Flowchart 

3.2.  Initial Model Design 

The core algorithms of the initial model include state update and reward calculation, as shown in Eqs. 

(1) and (2): 

 robotPosotion=

{
 
 

 
 

robotPosition+ [0,1]               (up)

robotPosition+ [0, −1]     (down)

robotPosition+ [−1,0]         (left)

robotPosition+ [1,0]         (right)

 (1) 

which is used to update the current state of the robot so that it can adjust its decision-making strategy 

based on feedback from the environment. 

 reward = −∥ robotPosition− goalPosition ∥ −10 ∙ I(distanceToObstacle < 1) (2) 

which is used to compute the reward after the robot takes action in a given state. Negative rewards are 

used to penalize the robot for having a collision or taking a sub-optimal path, thus guiding the robot to 

learn to avoid these unfavorable situations. 

This basic models enables robots to progressively optimize their behavioral strategies through 

reinforcement learning mechanisms. However, due to the simplification of its approach, the initial model 

may be limited in its ability to navigate when faced with complex, dynamic environments. This 

limitation is mainly reflected in its weak ability to adapt to changes in complex environments, as well 

as the lack of an effective strategy to quickly find the optimal path when encountering multiple possible 

path choices. Consequently, while the fundamental model offers a foundation for learning, more 

sophisticated techniques may be necessary to enhance performance and adaptability in practical 

applications. 

3.3.  Optimized Model Design 

The optimized model is an extension of the initial model, incorporating the Double DQN algorithm and 

heuristic strategies, as shown in Eqs. (3) and (4): 
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 guidedQValues = 𝛼 ∙ heuristicCost+ (1 − 𝛼) ∙ qValues (3) 

 reward = −∥ robotPosition− goalPosition ∥ −10 ∙ I(distanceToObstacle < 1) − 0.1 ∙

(|robotPosition_1− goalPosition_1| + |robotPosition_2− goalPosition_2|) (4) 

The reward function in the optimized model is further refined by the addition of a penalty for path 

smoothness, which encourages the robot to choose routes that are not only efficient but also safer. 

Specifically, the model addresses potential problems such as path discontinuities and obstacle 

interference by incorporating smoothness criteria into the reward structure. In this way, the robot is able 

to evaluate and optimize its decision-making strategy more comprehensively, thereby improving 

navigation and safety. The optimization model aims to better handle dynamic environments, improve 

decision accuracy and action efficiency, thereby reducing risk and uncertainty and enhancing robot 

performance in complex tasks. 

4.  Experimental Results and Analysis 

4.1.  Initial Model Results Analysis 

The average reward during the training of the initial model is -2268.9165, which indicates its poor 

performance in path planning and obstacle avoidance. The training curve shows that the initial model 

exhibits significant fluctuations in the early stages of training and stabilized later, but with low reward 

values, indicating limited performance improvement. This result highlights the inherent limitations of 

basic Q-learning in handling dynamic and unpredictable environments. The training parameters of the 

initial model are shown in Table 1, and the training curve of the initial model is shown in Figure 2. 

Table 1. The Relevant Training Details and Parameters of the Initial Model 

 rlDQNAgent 

Status Training finished 

Episode number 1000 

Episode reward -2288.6682 

Episode steps 200 

Total agent steps 200000 

Average reward -2268.9165 

Average steps 200 

Episode Q0 1 

Averaging window 

length 

20 

Training stopped by MaxEpisodes 

Training stopped at Episode 1000 

 

Figure 2. The training curve of the initial model 
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4.2.  Optimized Model Results Analysis 

The average reward during the training of the optimized model is -1580.5414, significantly higher than 

the initial model. The training curve shows that the optimized model also fluctuates significantly at the 

beginning of the training period, but the reward value gradually increases and stabilizes at the later stage, 

demonstrating better path planning and obstacle avoidance performance. These improvements 

underscore the effectiveness of combining Double DQN with heuristic strategies in enhancing the 

learning and decision-making processes of the robot. The training parameters of the optimized model 

are shown in Table 2, and the training curve of the optimized model is shown in Figure 3. 

Table 2. The relevant training details and parameters of the optimized model. 

 rlDQNAgent 

Status Training finished 

Episode number 1000 

Episode reward -1570.8383 

Episode steps 200 

Total agent steps 185263 

Average reward -1580.5414 

Average steps 200 

Episode Q0 1 

Averaging window 

length 

20 

Training stopped by MaxEpisodes 

Training stopped at Episode 1000 

 

Figure 3. The Training Curve of the Optimized Model 

Figure 4 shows a comparison between the training curve of the initial model and the training curve 

of the optimized model: 

 

Figure 4. Comparison of the Training Curves between the Initial Model and the Optimized Model 
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The optimized model consistently outperforms the initial model in terms of total reward throughout 

the training process. The initial model shows significant fluctuations and instability, with frequent drops 

in reward, indicating inefficient learning and poor performance. In contrast, the optimized model 

maintains a relatively stable and higher total reward from the early stages of training, indicating that the 

optimization has significantly improved the model's learning efficiency and overall performance. 

5.  Discussion 

5.1.  Advantages of the Optimized Model 

The optimized model demonstrably enhances learning efficiency and path planning performance 

through the incorporation of the Double DQN algorithm and heuristic strategies. The Double DQN 

algorithm enhances learning outcomes by differentiating between the target Q-value and the current Q-

value, thereby mitigating the potential for Q-value overestimation. This separation facilitates the 

stabilization of the learning process, thereby enabling the implementation of more reliable policy 

updates [9][10]. The incorporation of heuristic strategies enhances the rationality and stability of path 

planning, enabling the robot to make more informed decisions based on both learned experiences and 

pre-defined heuristics [1][11]. This approach employs domain-specific knowledge to furnish auxiliary 

guidance throughout the training process, enabling the model to circumvent suboptimal pathways and 

concentrate on more promising regions of the solution space. As previously stated, the integration of 

heuristics with deep reinforcement learning results in the development of a more robust and efficient 

path planning algorithm. 

5.2.  Core Algorithms of Model Optimization 

The core algorithms of the optimized model encompass state update, reward calculation, and Q-value 

estimation. By meticulously accounting for path smoothness and obstacle proximity, the optimized 

model can effectively plan routes and avoid obstacles in complex dynamic environments [12][13]. As 

mentioned above, the state update formulation, which describes how the robot’s position changes with 

different actions, is the basis of the state transition function, which ensures that the robot updates its 

position based on discrete actions, facilitating the learning of the optimal motion strategy. Regarding 

reward calculation, the initial model employs a reward function that primarily considers the robot's 

distance to the goal and collisions with obstacles. This function uses negative distance and penalty terms 

to guide the robot in avoiding obstacles and approaching the goal. While this simple reward function is 

easy to implement, it may not capture all nuances of a dynamic environment. In contrast, the optimized 

model introduces an enhanced reward function that includes a path smoothness penalty, which 

encourages the robot to choose more reasonable paths, minimizing unnecessary turns and detours. The 

improved reward function not only considers goal distance and obstacle avoidance but promotes 

smoother paths, which is crucial for real-world applications where abrupt movements can lead to 

inefficiencies or safety hazards. For Q-value estimation, the Double DQN algorithm employs Equation 

(5) that reduces the risk of Q-value overestimation by separating the target Q-value from the current Q-

value, improves the robustness of the model in dynamic environments, and stabilizes the learning 

process, especially in environments with large and complex state and reward spaces. 

 𝑄(𝑠,𝑎;𝜃) = 𝑟 + 𝛾𝑚𝑎𝑥
′𝑎𝑄(𝑠′,𝑎′;𝜃′) (5) 

Furthermore, the integration of heuristic strategies into Q-value adjustment enhances the model’s 

performance. By combining heuristic insights with the learned Q-values, the model benefits from both 

empirical data and domain-specific guidance. This dual approach improves learning efficiency and path 

planning, ensuring a more effective and comprehensive decision-making process. 

5.3.  Implementation in MATLAB 

The experimental setup and model implementation are performed in MATLAB with the functionality 

of the Reinforcement Learning Toolbox that provides robust support for developing and evaluating 
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reinforcement learning algorithms, including predefined functions and environments that simplify the 

design, training, and deployment of agents. The environment was set up using MATLAB’s custom 

functions to simulate a dynamic scenario with moving obstacles. The state space included the robot's 

position and the positions of obstacles, while the action space consisted of discrete movements such as 

up, down, left, and right. This design introduces a high degree of complexity and dynamism to the 

environment, which is crucial for assessing the model's performance under realistic conditions. For agent 

configuration, the Double DQN agent utilizes two neural networks, one for policy evaluation and 

another for target Q-value estimation, to improve Q-value accuracy and model stability. These networks 

are trained using backpropagation with mean squared error as the loss function to ensure precise Q-value 

estimation. In the training process, the agent learns through multiple interactions with the environment, 

employing an experience replay mechanism to store and sample past experiences. This approach not 

only increased the diversity of learning data but also reduced overfitting to recent observations, thereby 

enhancing the model’s learning efficiency and decision-making quality. 

5.4.  Verification of Experimental Results 

The experimental results show that the optimized model performs significantly better than the initial 

model in terms of average reward and more stable learning curves in path planning and obstacle 

avoidance tasks, which verifies the effectiveness and robustness of the optimized model in dynamic 

environments. Figures 2, 3, and 4, along with Tables 1 and 2, provide a detailed comparison of the 

algorithm's performance before and after optimization. These visual and tabular representations clearly 

illustrate how the optimized model enhances performance. Specifically, the training curves of the initial 

model highlight its limited performance and high variability, which often led to inconsistent results and 

sub-optimal performance. In contrast, the optimized model displays more consistent and gradual 

improvements over time, achieving higher average reward values. The enhanced stability and 

performance of the optimized model can be attributed to the integration of heuristic strategies and 

advanced reinforcement learning techniques. By incorporating heuristic guidance, the model benefits 

from domain-specific insights, which complement the data-driven learning approach of Double DQN, 

leading to more efficient path planning and more reliable obstacle avoidance, thereby improving the 

overall capabilities of the robotic system. These results highlight the significant advantages of 

employing sophisticated reinforcement learning techniques and heuristics to not only improve the 

efficiency and effectiveness of robotic systems, but also to ensure their reliability when dealing with 

complex and changing environments, underscoring the immense benefits of model optimization. 

6.  Conclusion 

This study explored the development and optimization of algorithms for robot path planning and 

obstacle avoidance in dynamic environments. By comparing a traditional Q-learning approach with an 

advanced model that integrates Double Deep Q-learning (Double DQN) and heuristic strategies, the 

research demonstrates potential improvements in both efficiency and reliability. The optimized model 

generally performed better than the initial model across various metrics, particularly in addressing the 

challenges posed by dynamic and unpredictable environments. The deployment of the Double DQN 

algorithm was effective in reducing the overestimation bias commonly seen in Q-Learning, leading to 

more stable and accurate policy decisions. Furthermore, the inclusion of heuristic strategies provided 

additional guidance, which enhanced the model’s ability to navigate complex scenarios and improve the 

learning process. Overall, this research highlights the potential benefits of advanced reinforcement 

learning techniques in developing robotic systems capable of real-time decision-making in dynamic 

settings. The findings provide useful insights that can inform the design of more efficient and reliable 

algorithms for future applications in autonomous systems, robotics, and related fields. 
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