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Abstract. Face generation, as a cutting-edge generative technology, has made significant strides 

in various image synthesis tasks, including facial inpainting, text-to-image translation, and 

video-based facial animation. Generating realistic and diverse human faces is a critical task in 

computer vision, with a wide array of real-world applications. Given the remarkable success of 

face generation models, there has been a growing interest in leveraging advanced techniques to 

further improve the quality, diversity, and control of generated faces. This paper will provide a 

comprehensive overview of the state-of-the-art face generation techniques. Specifically, the 

paper reviews the key approaches in this field, including Generative Adversarial Networks 

(GANs), Vector Quantized methods, and the more recent Diffusion Models, each of which has 

contributed significantly to the advancement of face generation. The paper discusses how these 

models have evolved to handle the complexity of face generation, from capturing subtle facial 

details to enabling fine-grained control over facial attributes. The paper also explores the major 

applications of face generation technologies, with a particular emphasis on their use in 

entertainment, virtual reality, and security. Finally, the paper identifies promising directions for 

future research in face generation, such as improving the interpretability of models, addressing 

ethical concerns, and enhancing the ability to generate faces that are both highly realistic and 

diverse. 

Keywords: Face generation, Diffusion model, Generative adversarial network, Variational 

autoencoder. 

1.  Introduction 

Face generation, a significant generative task within the field of artificial intelligence, involves creating 

realistic and diverse human facial images from various input modalities. Among the predominant 

methodologies advancing the field of face generation are Vector Quantized methods [1], Generative 

Adversarial Networks (GANs) [2], and Diffusion Models [3-5]. Each of these approaches uniquely 

contributes to the development of this domain, demonstrating distinctive strengths in the synthesis of 

realistic and diverse facial images. Vector Quantized methods deploy a framework comprising an 

encoder and a decoder. The encoder compresses the input into a discrete latent space defined by 

statistical parameters. New data are then generated by sampling from this discrete latent space and 

reconstructing through the decoder, making it adept at synthesizing the inherent variability in facial 

features. GANs feature a dual-network architecture where the generator creates images intended to be 

indistinguishable from authentic data, and the discriminator evaluates their realism. This adversarial 

feedback loop enhances the generator's ability over time, enhancing its capacity to produce photorealistic 
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facial images with complex textures and details. Diffusion Models simulate a process that gradually 

adds noise to data until only Gaussian noise remains. The model then learns to reverse this process, 

effectively denoising to regenerate the original data with added conditions. Therefore, the paper provides 

an overview of face generation methods respectively based on Vector Quantized methods, GANs and 

diffusion model, and then discuss the future research direction for face generation. 

2.  Face generation 

In this section, the paper will classify the face generation methods into the three paradigms previously 

introduced.   

2.1.  Face generation based on Vector Quantized methods 

In the realm of face generation, several advanced methodologies leveraging vector quantization have 

shown promising capabilities. Models based on vector quantization are initially designed to complete 

more comprehensive generation tasks, thus they can also be applied to the downstream tasks like face 

generation. (Vector-Quantised Variational AutoEncoder) VQ-VAE [1] is the very first vector quantized 

method, which integrates vector quantization with the traditional VAE [6] framework to encode input 

images into discrete latent spaces. This quantization simplifies the latent representation and enhances 

the robustness of the image reconstruction, aiding in producing diverse facial images with significant 

control over their features. Though VQ-VAE has strong generation capability, the objective only 

consists of one reconstruction loss and two regularization loss, which is still simple. To enhance the 

model’s capability, VQ-GAN [7] improves the objective. VQ-GAN [7] combines the adversarial 

training mechanism of GANs with vector quantization to improve the output image quality. Due to the 

addition of the GAN loss, the discrete codebook becomes more interpretable. Lastly, to speed up the 

generation process, traditional autoregressive generation is improved. MaskGIT [8] utilizes a two-stage 

process that combines vector quantization with transformer-based generative modeling. Initially, the 

model employs a VQ-GAN [7] to encode images into a compressed, discrete format, significantly 

reducing the dimensionality and simplifying the image data into manageable sequences of discrete 

tokens. Subsequently, MaskGIT leverages a bi-transformer model in its second stage to generate or 

complete images by predicting masked segments based on the surrounding tokens.  While MaskGIT is 

capable enough to complete simple face generation tasks, it could be further improved by fusing other 

modality information. This would involve modifying the transformer to handle multimodal inputs, or 

trains specific encoder to encode text, segmentation mask or sketch to the same domain of the image 

discrete tokens. 

2.2.  Face generation based on GANs 

The evolution of face generation has been prominently marked by the development of GANs, 

particularly with the inception of StyleGAN [9-11] and its subsequent iterations. Each generation of 

StyleGAN has introduced significant enhancements that have continuously pushed the boundaries of 

realism, control, and diversity in generated facial images. StyleGAN [9] was the first to introduce a 

sophisticated system of layered control through a disentangled latent space, represented as 𝑧 , which is 

mapped to an intermediate latent space 𝑤 . This mapping, 𝑓: 𝑧 → 𝑤 , allows for more stable and 

controllable style changes at different levels of the synthesis process. Each level of detail is controlled 

by a different segment of the 𝑤  vector, influencing the generation through adaptive instance 

normalization (AdaIN) at each layer of the generator: 𝐴𝑑𝑎𝐼𝑁(𝑥𝑖 , 𝑦) = 𝑦𝑠,𝑖
𝑥𝑖− 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
 + 𝑦𝑏,𝑖, where 𝑥𝑖 is 

the feature map of the style 𝑖, and 𝑦 is the style vector derived from 𝑤, split into scale 𝑦𝑠,𝑖 and bias 𝑦𝑏,𝑖 

components. This approach enabled precise manipulation of facial features across different levels of 

detail. StyleGAN2[10], a direct successor, addressed several of the shortcomings of the original model, 

including removing certain artifacts like water droplet-like effects and improving the consistency of the 

features across different resolutions. It improved by revising the normalization process, introducing 

weight demodulation to replace AdaIN: 𝑤′  =  
𝑤

√∑ 𝑤2+𝜖
. This version also refined the style mixing 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/81/20241082 

130 



 

 

abilities, allowing even more nuanced control over the generated outputs, enhancing the model’s 

capacity to produce highly realistic and varied facial expressions and identities. StyleGAN3 [11] was 

developed to tackle the issue of translational and rotational equivariance. The transformational 

equivariance is achieved by ensuring that the learned features 𝐹 in the network transform predictably 

under rotations and translations, which can be mathematically represented as:𝐹(𝐺(𝑥)) = 𝐺(𝐹(𝑥)), 

where 𝑔 represents a geometric transformation applied to the input 𝑥. This improvement was crucial for 

applications requiring consistent facial orientation, such as animated characters. 

Building upon these foundational advancements, several notable variants have emerged: StyleGAN-

XL [12] further pushes the capabilities in handling extremely large datasets and enhancing the diversity 

of the generated images. This variant is particularly adept at scaling up the training process without 

compromising the detail and quality of the generated faces. HyperStyle [13] uses a hypernetwork 

approach where an external network generates parameters for the primary StyleGAN model, 

dynamically adjusting styles based on additional input conditions, modeled as: 𝐻(𝑥; 𝜃) → {𝑤′|𝜃 ∈ Θ}. 

Here, 𝐻 represents the hypernetwork function parameterized by 𝜃, producing style parameters 𝑤′ that 

directly influence the primary StyleGAN generator, allowing dynamic style manipulation without 

retraining the network. This method makes it possible to adapt the synthesis process according to 

specific requirements without retraining the network. StyleRig [14] combines StyleGAN with a 3D 

morphable model, adding rig-like control over the generated faces. This variant is particularly useful for 

animation and VR applications. StyleFlow [15] uses conditional continuous normalizing flows in the 

StyleGAN latent space to allow attribute-conditioned traversal, making changes such as altering age or 

adding accessories without affecting other intrinsic attributes like identity. 

2.3.  Face generation based on diffusion model 

Diffusion models have rapidly ascended to prominence in the field of generative models, proving highly 

effective for tasks such as face generation. Compared to traditional GANs, diffusion models introduce 

a continuous noise process that allows for fine control over the quality of generated images, reducing 

instability and mode collapse during training. Diffusion models based on single-modal information [16, 

17], such as textual descriptions, have already developed powerful capabilities and they are 

commercially viable. Recently, models that can exploit complex information have emerged. 

Composable Diffusion [18] is an innovative approach that enables the combination of multiple instances 

of diffusion models to enhance the capability of generating complex images conditioned on various 

inputs. It typically employs the same text-to-image diffusion model in a layered manner, allowing for 

the composition of visual elements in a stepwise and controlled manner. The model operates by 

integrating intermediate results from different stages or conditions, which makes it particularly useful 

for scenarios where a clear layering or staging of visual elements is beneficial, such as in detailed scene 

constructions or complex character designs. However, Composable Diffusion relies on the staging of 

multiple diffusion processes, which adds significant complexity to the model's architecture and training 

procedures. In contrast, The Collaborative Diffusion [19] framework represents a significant evolution 

in multi-modal image synthesis and editing. It integrates pretrained uni-modal diffusion models to work 

in parallel, leveraging their individual strengths without the need for re-training. This is achieved 

through a novel component called the "dynamic diffuser," which adaptively modulates the influence of 

each uni-modal model based on the specific requirements of the multimodal input conditions. Though 

dynamic diffuser could predict an appropriate weight to each uni-modal, the information from different 

modal could not be more fully integrated. 

3.  Discussion 

The exploration of face generation through various generative models, including vector quantized 

methods, GANs, and diffusion models, reveals a rapidly advancing field. Each class of models brings 

unique strengths to the challenges of creating realistic, diverse, and controllable facial images. Several 

key directions emerge for further research and development in this area. 
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3.1.  Enhanced Multimodal Capabilities 

As seen in models like Composable and Collaborative Diffusion, the integration of multimodal inputs 

(e.g., text, sketches, existing images) holds significant promise. While current models are exploring 

methods to exploit multimodal information, there still exists techniques like contrastive learning to 

integrate information better. Future work could focus on enhancing the synergy between different 

modalities to create more coherent and contextually accurate facial images. Research could also explore 

deeper into unsupervised or self-supervised methods that learn to leverage multimodal data without 

extensive labeled datasets. 

3.2.  Improving Model Accessibility and Efficiency 

While models like StyleGAN-XL and Imagen show exceptional capabilities, they often require 

substantial computational resources. Future developments could focus on making these models more 

accessible by optimizing their architectures or utilizing pre-trained models for efficiency without 

sacrificing output quality. Reducing computational demands of training and deploying these 

sophisticated models is a priority research direction. 

3.3.  Addressing Bias and Fairness 

Bias in AI-generated faces remains a concern, as models often perpetuate biases present in their training 

data. Future research should prioritize the development of algorithms that can identify and reduce biases, 

ensuring that face generation models produce fair representations of all human features. This involves 

not only technical improvements, but also careful consideration of the data used for training these 

models. 

3.4.  Regulatory and Ethical Considerations 

As face generation technology becomes more widespread, it also raises ethical concerns, particularly in 

the contexts of deepfakes. Future research should include the development of regulatory frameworks 

and ethical guidelines to manage the use of face generation technologies. Additionally, technology that 

can detect synthetic images could be an important area of development. 

4.  Conclusion 

This paper has provided a comprehensive review of the advancements in face generation technologies, 

focusing on three primary classes of models: vector quantized methods, GAN-based methods, and 

diffusion models. The technical challenges discussed include training stability, scalability, control over 

generated attributes, and efficient integration of multimodal inputs. Addressing these challenges is 

essential for improving the robustness and applicability of face generation models. Future research 

should focus on refining model architectures to enhance efficiency, optimizing training processes to 

ensure stability, and developing techniques to better handle diverse and complex input conditions. 

Besides, the growing impact of face generation technologies in practical applications should be 

emphasized. The ethical considerations, including privacy concerns and potential misuse of generated 

faces, must be addressed. Ensuring that these technologies are used responsibly is crucial as they become 

more integrated into everyday applications. 
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