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Abstract. Embedded Artificial Intelligence (AI) systems are important components of 
autonomous vehicles. However, incorporating AI into autonomous vehicles is technically 
complex, due to the constraints of computation, real-time processing of data, uncertainty 
handling, and hardware limitations. Bayesian Networks (BNs) are a promising method that 
allows probabilistic modelling in adaptive learning and environment perception. Here we report 
on an overview of the application of BNs on autonomous driving, with an emphasis on how BNs 
can be optimized for embedded system resource constraints, including both computational and 
energy. Various optimization techniques are discussed, such as model pruning, approximation, 
acceleration using hardware accelerators, such as Field-Programmable Gate Arrays (FPGA) and 
Application Specific Integrated Circuit (ASICs), and advanced cooling and power management 
to ensure AI reliability under high computational load. By reviewing these approaches, we aim 
to contribute to the development of more robust and green AI systems for autonomous driving. 

Keywords: Embedded AI, Autonomous Driving, Bayesian Networks, Computational 
Constraints, Real-Time Decision Making. 

1.  Introduction 
Autonomous driving is one of the hottest new technological developments on the horizon, and is set to 
revolutionise modern transportation systems by improving safety, efficiency and accessibility. A key 
component of this revolution is the use of embedded artificial intelligence (AI) systems within vehicles, 
which are required to operate within strict constraints and perform complex tasks such as real-time 
decision-making, scene/environmental recognition and adaptive learning. Bayesian Networks (BNs), in 
particular, have found application in this context due to their ability to model uncertainty and make 
probabilistic inferences from incomplete or noisy data. However, the integration of BNs in the resource-
constrained low-power environments of embedded systems imposes a number of challenges, 
particularly given that most BN models are computationally intensive, and their ability to complete their 
tasks efficiently is highly dependent on the use of optimised algorithms that can run on the constrained 
hardware platforms as well as novel power and thermal management techniques to maintain the 
reliability of the system under high computational loads. This paper will deal with the challenges of 
implementing BNs in embedded AI systems for autonomous driving. First, we will provide an in-depth 
analysis of the computational and hardware constraints that impact the performance of BNs. Second, we 
will cover optimisation techniques and hardware accelerators that can be used to enhance performance 
[1]. Third, we will address the critical problem of power management and heat dissipation involved in 
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ensuring that the AI systems run in a sustainable manner in the hostile environment of autonomous 
vehicles. At the end of this analysis, we will conclude on the effectiveness of BNs in powering 
autonomous driving technology. 

2.  Adaptive Learning in Embedded AI Systems 

2.1.  Computational Constraints 
The computational constraints of embedded AI systems render complex models such as Bayesian 
Networks difficult to implement. However, BNs can be adapted to operate within the confines of an 
embedded system’s processing power through methods such as model pruning and approximation. In 
this context, the BN serves as a model for all the relevant variables involved in driving, such as speed, 
road conditions and obstacles. 
The BN reflects these relationships as conditional probabilities, such as the probability of one event 
(whether an obstacle exists given the speed and road condition) given other events (the speed and road 
condition): 

P(O|S,R) = P(O)⋅P(S|O)⋅P(R|O)
P(S)⋅P(R)

                                                 (1) 
where P(O|S,R) is the conditional probability of an obstacle O given the speed S and road conditions 
R, P(O) is the prior probability of an obstacle, P(S|O) and P(R|O) are the likelihoods of speed and road 
conditions given the presence of an obstacle,  P(S) and P(R) are the marginal probabilities of speed and 
road conditions, respectively. Leveraging history, the BN updates those probability distributions to 
contextualise the current environment, and, by doing so, can make a good guess about what actions the 
Al should take with its constrained computational capability.For example, time-series data from sensors 
can update BN nodes by updating the conditional probabilities to recalculate the conditional likelihoods 
of observable events, and direct computational resources to expectations about the current context’s 
most probable outcome [2]. This way, a BN-based Al system will not only be agile, but will be 
responsive and accurate enough to work within the computational constraints of an embedded 
environment. 

2.2.  Real-Time Decision Making 
Another crucial aspect is its ability to make real-time decisions that are required for safe and effective 
operation of autonomous vehicles. This is especially important when the system must learn to cope with 
uncertainty. Again, a Bayesian Network provides a structured approach to decision-making under 
uncertainty. In an embedded AI system, the BN updates its beliefs in real time using incoming sensor 
data, and uses these beliefs to accelerate the decision-making process. As an example, the BN could 
model the probabilities of the driving conditions that the vehicle could encounter such as slippery roads 
or sudden obstacles, and update those probabilities in real time as sensor data is received. In this way, 
the AI can make a quick assessment, and take action based on the best available information. By focusing 
the computation on those most likely outcomes, it is possible to achieve real-time functionality without 
requiring extensive computational power [3]. Furthermore, BNs can handle probabilistic relations that 
are under-specified, or noisy, which can model the real-world driving conditions that the system will 
likely encounter, where the data from the sensors may be unreliable, or incomplete. 

2.3.  Handling Uncertainty 
Dealing with this uncertainty is difficult in the context of autonomous driving, but a BN is ideally suited 
to that objective. An adaptive learning BN is able to modulate the uncertainties presented by the driving 
environment by representing the probabilistic relationships among sensor data, vehicle-control data and 
weather data. When a new situation presents itself – for example, the appearance of a pedestrian in the 
road – the BN uses its probabilistic information to quickly update the likelihood of various outcomes, 
namely colliding with a pedestrian, or successfully avoid them, and subsequently provide the 
recommendation for the appropriate type of braking in order to achieve the optimal outcome. By 
adhering to this basic process, the AI is able to continuously update its probability distribution in order 
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to dynamically characterise new and unexpected scenarios [4]. In addition to the basic probabilistic 
reasoning used by a BN, Bayesian Networks can also be coupled with a reinforcement learning 
algorithm to learn from past decisions and subsequently update their probabilistic distributions to 
optimise future decisions. For autonomous driving, this gap-bridging innovation allows the AI to learn 
from new information in order to not only deal with past uncertainties, but to avoid future uncertainties 
as well. Although there are other mathematical models that can be employed to manage the uncertainty 
of autonomous driving, the Bayesian Network is ideally suited to autonomous driving due to its ability 
to dynamically characterise its environment and respond with an appropriate action [5]. In Table 1 below, 
a Bayesian Network is depicted updating its probability estimates in response to new evidence that an 
autonomous vehicle will strike a pedestrian. 

Table 1. Bayesian Network Probability Updates in Autonomous Driving Scenario 

Variable Initial Probability New Evidence  
(Pedestrian Steps into Road) Updated Probability 

( P(Collision \ \Speed, Distance) ) 0.05 Speed = 50 km/h,  
Distance = 10 m 

( P(Evasive\ Maneuver \ \Speed, Distance) ) 0.20 Speed = 50 km/h,  
Distance = 10 m 

( P(Safe \ Stop \ \Speed, Distance) ) 0.75 Speed = 50 km/h,  
Distance = 10 m 

( P(Collision \ \ Weather \ Conditions) ) 0.02 Weather = Rainy 
( P(Evasive \ Maneuver \ \ Weather \ Conditions) ) 0.10 Weather = Rainy 
( P(Safe \ Stop \ \ Weather \ Conditions) ) 0.88 Weather = Rainy 

3.  Environmental Perception in Embedded AI Systems 

3.1.  Sensor Fusion 
Environmental perception in autonomous vehicles needs to integrate data from multiple sensors, most 
notably cameras, light detection and ranging (LiDAR), radar and ultrasonic sensors. Bayesian Networks 
play an important role in sensor fusion because they provide a probabilistic framework for combining 
data from these disparate sources. In a BN, each sensor’s output is modelled as a node, and dependencies 
between those nodes are represented as edges. The BN then updates the probabilistic belief about 
environmental states (such as presence of obstacles, or the state of the road surface) based on the 
combined information from the sensors. This allows the system to resolve conflicts between sensors and 
decrease uncertainty in the environmental model [6]. For example, if a radar sensor detects an object at 
a certain distance, but a camera fails to confirm it, the BN can assign a probability for the presence of 
the object and then use that information to guide the response of the vehicle. This probabilistic approach 
to sensor fusion means that the AI system is more likely to create a more accurate and reliable 
environmental model, when individual sensors provide incomplete or conflicting data. 

3.2.  Object Detection and Classification 
Autonomous driving relies on object detection and classification algorithms, which can be enhanced 
with Bayesian Networks (BNs). In an embedded AI system, object detection can be modelled as a 
probabilistic process, where the likelihood of an object being detected (eg, whether it is a pedestrian, 
vehicle or traffic sign) is linked to sensor data and the context (ie, the current conditions of the 
environment). For example, the BN can use past experience about the typical appearance and behaviour 
of pedestrians in different driving conditions to improve the detection of pedestrians. In this way, the 
BN can update its probabilities in real time based on changing conditions, such as varying light or 
weather conditions, and maintain high detection accuracy. The BN can also be used to classify objects 
based on sensor data and contextual information such as the location or movement pattern of the object 
[7]. With this probabilistic classification approach, the AI system can make better decisions about how 
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to respond to different types of objects, minimising false positives or negatives and maximising safety 
[8]. 

3.3.  Environmental Mapping 
Accurate environmental mapping is critical for autonomous driving, and Bayesian Networks provide a 
robust framework for this task. In a BN-based mapping system, the environment is represented as a 
probabilistic model, where different features—such as roads, buildings, and obstacles—are nodes 
connected by edges that represent spatial relationships. As the vehicle moves, the BN updates its map 
based on sensor data, adjusting the probabilities of different features and their locations. This real-time 
updating capability allows the AI system to maintain an accurate and up-to-date map, even in dynamic 
environments where conditions can change rapidly. For example, if the vehicle detects a new obstacle 
that was not present in the initial map, the BN can update the map to include this obstacle and adjust the 
probabilities of other features accordingly. This probabilistic approach to environmental mapping 
ensures that the AI system can navigate complex environments with greater confidence and accuracy, 
supporting safer and more reliable autonomous driving [9]. Figure 1 represents the initial and updated 
probabilities of different environmental features, as adjusted by a Bayesian Network during real-time 
environmental mapping in an autonomous driving system. 

 
Figure 1. Environmental Mapping: Probability Adjustments in Bayesian Network 

4.  Integration of Embedded AI with Vehicle Hardware 

4.1.  Hardware Constraints 
Bayesian Networks, with their inherent flexibility and extendibility, pose a challenge in constraint-heavy 
environments such as the embedded AI of autonomous vehicles. Although the power of BNs is great, 
inference and updating probabilities needs considerable computational resources, which may require 
real-time constraints to be met in the embedded environment. Keeping in mind the need for enhancing 
the performance of BNs and integrating them within embedded AI systems, researchers have developed 
several variants of BNs along with various methods and algorithms. These optimized BN algorithms 
intend to overcome the computational constraints of hardware, and implement BNs in the embedded AI 
system of an autonomous vehicle. The optimizations in these BNs may have various forms such as 
simplifying the network structure, reducing the nodes and edges, or approximating the model through 
inference. Another way to implement this is through the design of hardware accelerators like Field 
Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) to be 
computationally efficient and fit the physical and computing constraints of the vehicle itself [10]. Figure 
2 Overview of Bayesian Network Structure, Learning Process and Implementation Flow in a 
Constrained Environment.  
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Figure 2. Optimized Bayesian Network Implementation and Learning Process in Embedded AI Systems 
(Source:Frontiers.com) 

4.2.  Power Management 
In electric vehicles, for instance, battery life is a big concern even in the most mundane driving 
conditions Such computationally expensive Bayesian Networks can be made more energy-efficient by 
using traditional optimisation techniques to minimise the overall power consumption. One line of 
research centres around dynamic voltage and frequency scaling (DVFS), which enters the picture when 
the hardware that runs the BN algorithms has multiple operating modes. For instance, in the case of an 
electric vehicle, this means reducing the frequency of BN updates when the vehicle is cruising on the 
highway with little traffic, as a way to reduce power consumption, then increasing it when it’s navigating 
a busy intersection, to ensure it can update quickly enough to track the changing situation on the road. 
Another line of research suggests that Bayesian Networks could be more energy-efficient on embedded 
chips by using energy-efficient BN models, such as ones based on binary decision diagrams or sparse 
representations. Power management is critical to ensure that embedded AI systems can operate 
efficiently and sustainably in the energy-constrained operating environment of an autonomous vehicle. 

4.3.  Heat Dissipation 
Heat dissipation is a significant challenge in the integration of embedded AI systems, particularly when 
running computationally intensive models like Bayesian Networks. The high processing demands of 
BNs generate substantial heat, which must be managed effectively to prevent overheating and ensure 
the reliability of the system. To address this, advanced cooling techniques, such as liquid cooling and 
heat pipes, are being explored for use in automotive environments. These cooling solutions can provide 
efficient heat dissipation in compact spaces, ensuring that the AI system remains within safe operating 
temperatures even during high computational loads. Additionally, thermally optimized hardware, such 
as AI accelerators with integrated heat management features, can help reduce the thermal load on the 
system. For example, by distributing the computational workload across multiple processing units with 
individual cooling mechanisms, the system can prevent localized hotspots and improve overall thermal 
efficiency. Combined with software-based thermal management strategies—such as workload balancing 
and thermal-aware scheduling—these hardware solutions ensure that embedded AI systems can operate 
reliably and safely in the demanding environment of autonomous driving. 

5.  Conclusion 
Those embedded AI systems that adopt BNs for autonomous driving would have a superior capability 
to reason probabilistically in real time under uncertain and dynamic driving conditions. The 
aforementioned key challenges would certainly complicate the design space for adopting BNs in 
embedded AI systems, including the computational constraints imposed by the microprocessor units or 
ASICs, the hardware constraints that limit the number of BN nodes and interconnections, and the 
hardware constraints that require efficient power and thermal dissipation for system reliability. 
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Nonetheless, the probabilistic reasoning and adaptive learning nature of BNs would provide a robust 
means to address these challenges. Above all, the optimisation techniques that include model pruning, 
approximation methods and hardware accelerators would ensure the feasibility of embedding BNs in 
the extremely tight embedded system constraints. These innovative cooling and power management 
strategies would be another key part of assuring the reliability and efficiency of the AI systems operating 
in high-stress environments. The advent of autonomous driving would certainly require the adoption of 
intelligent BNs that can manage the uncertainty of dynamic driving conditions and reduce risk for safe 
driving. The design challenges and optimisation techniques discussed in this paper contribute to realising 
robust embedded AI systems for autonomous driving in the future. 
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