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Abstract. In the context of accelerated technological advancement, artificial intelligence is 

becoming an increasingly pivotal enabler of autonomous driving. With the integration of 

machine learning into autonomous driving systems, the traditional modular architecture has been 

disrupted, evolving into a more advanced end-to-end architecture. The end-to-end architecture 

has the advantages of simple structure and no cumulative error, especially under the current 

situation where a large amount of data and functions are continuously inputted, it demonstrates 

superior performance compared to the traditional modular system. However, the implementation 

of end-to-end is still mostly confined to academia and has not been widely applied to actual 

vehicles; the mainstream on actual vehicles is still the modular system architecture. As a result, 

the two system architectures are compared in this paper to ascertain their relative complexity, the 

extent to which errors are accumulated, their interpretability, the security they afford, and the 

extent of their data dependency. This is achieved through a comprehensive literature review. 

Furthermore, the paper delineates the deployment of the end-to-end system and outlines 

potential avenues for addressing the challenges that emerged during the implementation phase. 

The results indicate that the end-to-end system exhibits a certain degree of sophistication. 

However, a series of challenges pertaining to interpretability and security must be addressed to 

fully realize the potential of the end-to-end system. 

Keywords: Artificial Intelligence, Autonomous Driving, End-to-End System Architecture, 

Modular System Architecture. 

1.  Introduction 

Nowadays, the exponential advancement of artificial intelligence has positioned the domain of 

intelligent autonomous driving as a pivotal area of technological advancement, in which end-to-end, a 

pioneering architectural approach, has emerged as a disruptive force, challenging the conventional 

modular system architecture. It is founded upon machine learning and extensive model datasets, 

continuously generalizing the acquired patterns to novel contexts. This architectural style offers several 

advantages, including a streamlined system structure, the absence of accumulated errors, robust 

generalization capabilities, and high adaptability [1][2][3]. Nevertheless, a considerable proportion of 

the recent developments in end-to-end research remain at the theoretical level and modular architectures 

continue to represent the prevailing approach. This paper therefore describes the technical 

characteristics and advantages and disadvantages of end-to-end and modular system architectures, 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/102/20241031 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

141 



 

 

respectively, and focuses on comparing the aspects of complexity, error accumulation, interpretability, 

security, evaluation testing, and data dependency. Furthermore, it provides a concrete reflection of the 

advancement of end-to-end solutions. The paper facilitates the pursuit of further technical research in a 

focused manner and indicates the direction of future development. 

2.  System Architectures in Autonomous Driving 

2.1.  End-to-end System Architecture 

The ALVINN (Autonomous Land Vehicle In a Neural Network) self-driving test vehicle, introduced 

back in 1988, is based on the end-to-end architecture, which can achieve up to 70km/h. The end-to-end 

architecture models the entire autonomous driving function into an overall network. In recent years, the 

concept of end-to-end has been extended to a greater extent, and its core definition has been updated to 

“lossless transmission of sensory information, which can be achieved Global Optimization of 

Autonomous Driving Systems.” As shown in Figure 1, the system directly maps raw sensor inputs to 

control command outputs without explicitly distinguishing each stage. To illustrate, deep learning 

models are employed to derive the steering angle of the vehicle directly from the sensed image 

information [4]. 

 

Figure 1. End-to-end system architecture 

2.2.  Modular System Architecture 

The structure of the architecture divides the entire function into distinct modules, each with a unique set 

of functions. The modular system architecture is distinguished by the characteristics of “structure 

layering and function superposition,” as each module is developed independently. In this architecture, 

each module has its own input and output. The output of a certain module can be used as the input of 

other modules. Notably, the output modality of each module is designed to be compatible with the input 

modality of subsequent modules in the system, in order to ensure correct propagation of information 

through the modular system [1][5]. 

The system is comprised of four modules, as shown in Figure 2. The first module is perception, 

which captures different types of information through various sensors and then processes and analyzes it 

through built-in perception algorithms to achieve the effect of understanding the surrounding 

environment. The second module is prediction, which combines state information, road structure 

information, high-precision map information, interaction information between targets, semantic 

information of the environment, and intention information of the target, to predict the perceived 

information, optimizing the planning effect and avoiding possible dangerous situations in advance. The 

third module is planning. The decision algorithm can select the best action strategy based on this input 

information, including path planning, speed control, lane keeping, obstacle avoidance, etc. The fourth 

module is control. This system often includes vehicle power system control, steering control, vehicle 

stability control, etc. Through the cooperation of various controllers, the vehicle can ultimately drive 

safely and stably at the target speed and path. 
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Figure 2. Modular system architecture 

3.  Comparison between End-to-End and Modular System Architectures 

3.1.  Complexity 

In autonomous driving system architecture, the complexity is mainly reflected in the number of models 

in the system, because each model requires separate training, optimization and iteration. The higher the 

complexity, the more parameters will increase during the continuous evolution of the model, which will 

ultimately lead to more investment in R&D personnel and costs. In a modular system architecture, 

functions are divided into multiple modules, and each of them is composed of smaller models. To 

illustrate, the extensive module of perception encompasses positioning, tracking, and classification. As 

autonomous driving functions become more sophisticated, the modular system architecture becomes 

more complex, and system response times increase. In the end-to-end system architecture, the functions 

of the aforementioned multiple models are implemented through an overall model, thereby providing a 

more streamlined solution. For example, the UniAD model proposed by Hu, et al., is an autonomous 

driving model that integrates the principal tasks of the full stack into a deep neural network [6]. 

3.2.  Error Accumulation 

In autonomous driving, certain errors will occur in each module during execution due to various factors, 

and the size of the overall system error will determine the upper limit of the system’s performance 

potential. In a modular system architecture, the occurrence of errors in the output of a previous level of 

the model will result in the transmission and accumulation of errors at the subsequent level, leading to 

the emergence of cascading errors. As the number of links increases, these cascading errors will become 

more significant. Concurrently, the disparate optimization objectives of the constituent models will 

result in an overall effect that is compromised by a lack of coordination between tasks. In the end-to-end 

system architecture, since the control signal can be directly output after inputting the sensor signal, the 

probability of cascading errors is greatly reduced, thereby greatly increasing the upper limit of the 

system’s performance potential. At the same time, in some systems, it is also proposed to design each 

link for the final task. For example, the UniAD model is designed for planning purposes, with each link 

taking the planning effect as its optimization goal and thereby achieving superior final results [6]. 

3.3.  Explainability 

Explainability refers to whether the specific operating logic in the model can be explained. 

Explainability includes two aspects: interpretability and completeness. The former refers to the 

understandability of the explanation, and the latter refers to the detailed definition of the model through 

explanation [1]. The quality of interpretability directly determines whether engineers can repair system 

defects in advance and whether they can debug later. Good interpretability can avoid some possible 

problematic results in advance, and can quickly locate the problem point when running problems occur, 

so that engineers can better debug the system and provide better performance guarantee [7]. The 

interpretability of the modular system architecture is relatively good, because the input and output of 

each module can be directly obtained. We can not only understand the specific functions of each module, 

but also quickly locate the corresponding module for debugging when a problem occurs. The 

interpretability of the end-to-end system architecture is very low. This is because it is an entire large 

system, equivalent to a black box model, with only the initial input and final output, bringing great 
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difficulties to later error reporting and debugging, and making it impossible to predict the lower limit of 

its performance. 

3.4.  Safety 

Safety is the most important factor to consider in an autonomous driving system, and is the premise and 

foundation of all other performance. In the modular system architecture, the modular driver stack has 

added some specific safety-related rules to the prediction or planning module to constrain and optimize, 

and in some cases, enforce them, thereby integrating Security constraints and rule implementation 

guarantee security [8]. In the end-to-end system architecture, since there are no relevant modules added, 

the low interpretability as a “black box problem” also makes it inherently lack some precise 

mathematical guarantees about security. In addition, in multi-frame training methods, causal confusion 

may occur that may lead to serious consequences. These security-related issues need to be improved and 

resolved [9]. 

 

3.5.  Data Reliance 

In a modular system architecture, the algorithmic operations of the modular system are primarily based 

on the rules that have been defined in advance. In the absence of such a framework, the system is 

susceptible to failure. This also implies that the dependence on the quantity and quality of data is 

relatively limited, and the situation of the data will not have a significant impact on the final outcome. In 

the end-to-end system architecture, the algorithmic process is driven by the data, which enables the 

system to continuously iterate through extensive and diverse data sets. However, the efficacy of the 

algorithm is contingent upon the quality of the input data, with the ultimate learning outcome largely 

determined by the data itself. To illustrate, the selection of a specific architectural style is predominantly 

influenced by the requirements and constraints inherent to the pertinent data [10]. 

4.  Application of End-to-End Autonomous Driving Technology 

End-to-end autonomous driving technology represents a state-of-the-art solution in autonomous driving 

systems, whereby raw sensor data is directly mapped to vehicle control commands, thereby simplifying 

the traditional modular architecture. This technology has made significant progress in the industry, with 

various companies and tech firms actively exploring and implementing it. Tesla’s FSD V12 system is a 

notable example, demonstrating the potential and challenges of end-to-end network architecture in 

Bird’s Eye View (BEV) space planning in real-world environments [10]. To further explore the practical 

applications and development trends of end-to-end autonomous driving technology, this section will 

introduce how major Original Equipment Manufacturers (OEMs) integrate end-to-end technology into 

their vehicles, and discuss how leading autonomous driving systems and algorithm companies are 

advancing the technology through innovative solutions. Through these analyses, a more comprehensive 

understanding of the role of end-to-end autonomous driving technology in the current market can be 

gained. 

4.1.  Original Equipment Manufacturers (OEMs) 

On May 20, 2024, Xpeng Motors made a notable advancement in autonomous driving technology with 

the announcement that its end-to-end large model would be integrated into its vehicles. It is anticipated 

that this development will enhance both the safety and efficiency of driving. However, it also presents 

technical challenges related to data processing and real-time responses. Additionally, Huawei has made 

a noteworthy contribution to the field with the release of an updated version of its intelligent driving 

system, QianKun ADS 3.0, on April 24, 2024. This update exemplifies Huawei’s technological 

advancement and may serve as a foundation for further advancements in end-to-end architectures. The 

system is designed to integrate big data and artificial intelligence in order to provide more accurate 

driving decision support. NIO has announced plans to introduce end-to-end active safety features, 

thereby demonstrating its commitment to enhancing vehicle safety. It seems probable that NIO’s 
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strategy will involve the utilisation of advanced sensors and data fusion technology with a view to 

improving the real-time responsiveness of its active safety functions. Furthermore, Zero One Auto has 

set a goal of implementing end-to-end autonomous driving technology by the end of 2024. This timeline 

demonstrates the company’s accelerated pace of technological advancement and testing, which has the 

potential to propel advancements in the autonomous driving industry as a whole [11][12]. 

4.2.   Autonomous Driving System and Algorithm Companies 

Pony.ai has made significant progress in simplifying its system architecture by integrating conventional 

autonomous driving modules into an end-to-end model, which was applied to both L4 autonomous taxis 

and L2 assisted driving passenger cars as of August 2023. This integration not only streamlines the 

system but also enhances its compatibility and scalability, allowing for more effective handling of 

complex driving scenarios and diverse traffic conditions. In addition, Nvidia revealed its development 

plans for autonomous driving, including breakthroughs in the L2++ system and the integration of large 

language models (LLM) and visual language models (VLM) into vehicles, which indicates that Nvidia 

is investigating sophisticated AI technologies to enhance the system’s intelligence and adaptability. 

However, this also presents significant challenges in data processing and algorithm optimization. 

SenseTime, for its part, demonstrated innovation in this area with the launch of its end-to-end 

autonomous driving solutions, UniAD and DriveAGI, which, as a “modular end-to-end” solution, may 

have advantages in terms of flexibility and maintainability, while DriveAGI, as a “single-mode 

end-to-end” solution, may have an overall performance and consistency have advantages. The 

comparison and application of these two approaches will have a significant impact on the future 

development of autonomous driving technology [11][12]. 

5.  Future Prospects 

5.1.  Optimizations for Explainability and Testing 

In order to ensure the interpretability of end-to-end automated driving systems, it is necessary to 

implement interpretation methods that are both local and global in nature. A local explanation provides 

an account of the fundamental principles that underpin the model. In contrast, global explanations seek 

to achieve a comprehensive understanding of the model's behavior, thereby enhancing the 

interpretability of the system. This is achieved by elucidating the underlying knowledge content. There 

is not much overall research on global explanation, and future research needs to focus on this area [13]. 

The current boom in large models in language and vision can be combined with autonomous driving to 

solve some problems. For example, the DriveMLM large model proposed by SenseTime represents a 

promising avenue for further investigation [14]. In this large model, the introduction of LLM is not 

merely a matter of convenience; rather, it is a necessary step to enable the model to control the vehicle. 

However, LLM is not a suitable solution on its own, as it is designed to output language and lacks the 

capability to control the vehicle. DriveMLM is aligned with the decision-making state and serves to 

convert language signals into vehicle control signals. This large model enables closed-loop testing 

operations and the generation of comprehensive driving interpretations and aligned decisions at a 

reduced cost, thereby facilitating the effective resolution of complex scenarios. 

5.2.  Optimization of Security Issues 

With regard to the input side, two significant challenges are occlusions and obstacles that fall beyond the 

sensing range. Nevertheless, V2X technology will prove an efficacious solution. By exchanging and 

sharing information with other road users, it is possible to supplement blind spots and correct the 

shortcomings of the sensing end itself. This provides a basis for further improvements. Complex 

information processing provides solutions [11]. Furthermore, the integration of sensor fusion enables 

the incorporation of supplementary sensors, thus augmenting the array of sensor capabilities and the 

number of parameters. It is possible to identify specific strategies for ensuring security in modular 

architectures. Supplementary “if-then” conditions can be integrated into the downstream control system 
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to impose constraints. As an alternative approach, reinforcement learning algorithms can be utilized to 

impose constraints, with the objective of limiting the final planning effect to a minimum. Huawei’s 

recently released ADS 3.0 employs this methodology of integrating artificial rules with end-to-end 

modeling, which is regarded as a comparatively secure solution within the industry. 

5.3.  Optimization of Data Problems 

In the context of automatic driving models, it is inevitable that some real-world scenarios will arise that 

are not reflected in the distribution of the training data. In order to cope with these challenges, it is 

essential to continuously optimize the end-to-end system in conjunction with the key techniques of 

zero-shot/less-shot learning [9]. As the end-to-end system necessitates a substantial quantity and quality 

of data, the iterative development of data and models can be facilitated by an autopilot data engine. The 

data engine automates the process of labeling high-quality perceptual labels with the assistance of 

large-scale perceptual models. Furthermore, it is capable of handling the generation and editing of some 

mining-difficult/extreme-case scenarios, which ultimately contributes to the diversity of the data set and 

the generalization capability of the models [9]. 

6.  Conclusion 

The investigation into the integration of artificial intelligence into autonomous driving systems has 

revealed that end-to-end architectures have the potential to exceed the capabilities of traditional modular 

approaches. The comparison shows that end-to-end is a highly sophisticated approach, offering 

significant advantages in terms of complexity and error accumulation. However, it also presents 

challenges in terms of interpretability, security, and data dependence, which have limited its broader 

adoption. The results indicate that these issues can be addressed through global interpretability studies 

and the use of large-scale fundamental models to improve the interpretability of the system, as well as by 

optimizing the information on the input side and supplementing the definitional rules to improve the 

safety of the system, paving the way for end-to-end systems to become the norm for autonomous driving 

in the future. It can be believed that end-to-end system architectures will have wider practical 

applications in vehicles in the future. Further research is required to address the remaining issues 

identified in this paper. This paper lacks further quantitative comparisons of the various characteristics 

of the two systems and requires the collection of extensive experimental data. In addition, additional 

research is required to develop a more comprehensive optimization scheme for the end-to-end system. 
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