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Abstract. In recent years, the MLP architecture has almost been monopolized in the field of deep 

learning, and its success is undeniable, but at the same time there are some problems. 

Kolmogorov-Arnold Network (KAN) is a new neural network architecture based on 

Kolmogorov-Arnold theory implementation. Compared to traditional MLPs, KANs have higher 

interpretability, faster training, and more efficient usability. In this paper, based on the theory of 

KAN, the author try to replace the Multi-Layer Perceptron (MLP) architecture in Vision 

Transformer (ViT) with the better performing KAN,author conducted scoring classification 

experiments on clinical acute respiratory distress syndrome (ARDS) and pneumonia image 

datasets provided by the Emergency Department of Changzheng Hospital in Shanghai, China, in 

order to validate the feasibility of the application of KAN+ViT in assisting clinical medical 

ultrasound diagnosis as well as its high efficiency in comparison with the traditional MLP+ViT 

structure. And classification experiments on the Cifar-10 dataset are used to validate the 

superiority of this new architecture over the traditional ViT architecture. 
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1.  Introduction 

The emergence of the Kolmogorov-Arnold Network (KAN) proposed by Liu et al. has led to a new 
direction in the existing research on neural network architectures [1]. It changes the complex structure 
in the traditional multilayer perceptron (MLP) by moving the training objects from the individual nodes 
in the neural network to the edges, i.e., the individual spline functions [2]. This not only greatly improves 
the efficiency of the neural network, but also simplifies the network structure, allowing KAN to use a 
smaller scale number of parameters for deep learning tasks. It has also enabled the updating of many 

applications in the field of deep learning, such as the replacement of the MLP layer in convolutional 
neural networks (CNNs) in Cheon's research on KAN convolution, which has led to better performance 
with KAN than with MLP for small datasets with the same parameter scales [3]. 

Cheon mentions in the paper that their research has some limitations, they only utilized a small-scale 
dataset to complete the experimental exploration, but the performance of KAN for a certain task in a 
detailed domain is not yet known [3]. Therefore, in this paper, author will explore the performance of 
MLP structure using KAN structure instead of Feed-forward Neural Network (FFN) in Vision 

Transformer (ViT) in the field of lung ultrasound in computer vision medicine [4,5]. 
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In the field of medical ultrasound, the scoring mechanism of the lungs (usually a score of 0-3) is 
primarily used to assess a patient's lung health status, especially in the diagnosis and monitoring of 
diseases such as Acute Respiratory Distress Syndrome (ARDS) or pneumonia [6]. This scoring system, 
commonly referred to as the Lung Ultrasound Score (LUS), is used to quantitatively assess the degree 

of lung involvement. In LUS, doctors classify the condition on a scale of 0-3 based on the patient's lung 
ultrasound images, and as the score increases, it means that the patient's condition is more severe. LUS 
has immeasurable value in clinical adjuvant therapy because it is non-invasive and it can be used in both 
high- and low-resource settings [7]. LUS is a composite score based on the A-lines, B-lines, shape of 
pleural line, and areas of consolidation on the patient's ultrasound image [7]. Thus, the scoring of a 
condition can be viewed as a classification task in computer vision. 

In this paper, the author will try to construct a ViT model using KAN, use it as an aid in the diagnosis 
of clinical images of lung ultrasound, and prove its better performance by comparing the experimental 

results obtained with the traditional MLP implementation of the ViT model.  

2.  Method 

2.1.  Kolmogorov-Arnold Networks 

The theoretical foundation of KAN comes from Kolmogorov-Arnold theory, the core idea of which is 
that any n-dimensional multivariate continuous complex function can be represented by a linear 
combination of several simple one-dimensional continuous functions, and KAN inherits this idea. 
Compared to the traditional MLP structure that uses fixed activation functions, e.g., Rectified Linear 
Unit (ReLU) and Sigmoid, on nodes, a.k.a. neurons, KAN moves the trainable spline activation 
functions to individual edges, a.k.a. weights, making the individual spline functions parameterized [1]. 

This allows approximating a complex function 𝑓(𝑥)  by linear combinations and transformations 

between individual spline parameterized functions 𝜑𝑞,𝑝 . The Kolmogorov-Arnold theory can be 

expressed as: 

 𝑓(𝑥) = ∑ Φ𝑞(∑ 𝜑𝑞,𝑝(𝑥𝑝)
𝑛
𝑝=1 )2𝑛+1

𝑞=1  (1) 

, where 𝑥𝑝 is an input feature, 𝜑𝑞,𝑝 is a parameterized activation function (spline function) and Φ𝑞  is a 

linear combination of activation functions. 
In KAN, B-spline functions are used as activation functions. These spline functions are segmented 

polynomials, defined by control points and knots. The B-spline function is particularly suitable for use 

as an activation function 𝜑𝑞,𝑝 in KAN because of its flexibility in fitting complex nonlinear relationships, 

which can be expressed as: 

 𝜑(𝑥) = 𝑤(𝑏(𝑥) + 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥)) (2) 

, where 𝑤 is a weight and 𝑏(𝑥) is a basis function, realized here by the Sigmoid Linear Unit (SiLU) with 
the mathematical expression is: 

 𝑏(𝑥) = 𝑆𝑖𝐿𝑈(𝑥) =
𝑥

1+𝑒−𝑥
 (3) 

And 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) is the spline function which can be expressed as: 

 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) = ∑ 𝑐𝑖𝐵𝑖(𝑥)𝑖  (4) 

, where 𝑐𝑖 is the coefficients obtained by training learning. And 𝐵𝑖(𝑥) is the B-spline base function, 
which is a segmented polynomial used to generate more complex curves or functions. These basis 

functions are used to construct spline curves for more complex patterns or data distributions. As stated 
by Liu et al: Compared to the complex structure of MLP, KAN has more interpretability as well as better 
performance, making it an effective alternative to MLP [1]. 
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2.2.  Vision Transformer 
The core theory of ViT stems from Transformer, which has revolutionized the field of NLP. And in the 
field of computer vision, the limitations of ViT's dependence on CNNs have been addressed by 
Dosovitskiy et al., allowing it to achieve equally good performance in this area [5]. The core idea of ViT 

is to segment an image into multiple fixed-size patches and then spread these patches into a one-
dimensional sequence. Unlike traditional CNNs, ViT relies entirely on Self-Attention Mechanism (SAM) 
to process image data [8,9]. Compared to the layer-by-layer extraction of features through local receptive 
fields in CNNs, ViT enables the model to capture global dependencies by representing the entire image 
as a sequence [5]. 

2.3.  KAN+ViT 

As mentioned above, the MLP structure is still used in ViT, therefore, this work tries to use the KAN 
structure in ViT instead of the original MLP to try to improve its performance. 

2.3.1.  Input. The input 𝑋 to the model is a tensor of the shape [𝐵, 𝐶, 𝐻,𝑊], denoting the batch size, 
number of channels, height and width respectively. The input image will be converted into this type of 
data and handed over to the model for processing. 

2.3.2.  Patch embedding. First, the size of the patch is set and then the input image is transformed into 

the form of fixed size patches. Assuming that the size of each patch is [𝑃, 𝑃], the height 𝐻 and width 𝑊 

of the image must be a multiple of 𝑃 so that the image can be completely divided into (
𝐻

𝑃
)× (

𝑊

𝑃
) patches. 

Then for each block, it needs to be flattened into a one-dimensional vector. Assuming that the image 

has 𝐶 channels (e.g. an RGB image has 3 channels), then the length of the vector after flattening is 

𝑃 × 𝑃 ×𝐶 for each block. The image is re-formed into a set of patches, denoted 𝑋𝑝𝑎𝑡𝑐ℎ, of shape is:  

 𝑋𝑝𝑎𝑡𝑐ℎ𝑒𝑠 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑋, [𝐵,𝑁, 𝑃2 ∙ 𝐶]) (5) 

, where 𝐵 is the batch size, i.e., the number of images per input; 𝑁 is the number of patches, i.e., 

(
𝐻

𝑃
)× (

𝑊

𝑃
); 𝑃2 is the number of pixels in each block after spreading, and 𝑃2 is the number of pixels 

within the patch to be multiplied by the number of channels  𝐶. 
This operation can be realized by a 2D convolutional layer, which is used to divide the input image 

into non-overlapping patches and map these patches into a  𝐷-dimensional embedding representation. 
The size of the convolution kernel should be equal to the size of the patch, and the step size should be 
set to the size of the patch, so that each patch is processed individually and there is no overlap: 

 𝑋′ =𝑊 ∗ 𝑋 + 𝑏 (6) 

, where 𝑊 is the convolutional kernel, 𝑋 is the input image, 𝑏 is the bias, and 𝑋𝑝𝑎𝑡𝑐ℎ𝑒𝑠 denotes the result 

of the image being divided into patches, each of which is mapped into an 𝐷-dimensional embedding 
space. 

2.3.3.  Position embedding and classification token. Before entering the ViT encoder, it is also necessary 
to add the position embedding and classification token, which are used to represent the positional 
information of the image and the classification information of the image, respectively. The classification 

token is a learnable vector that represents the global information of the entire image and is added in front 
of all block embeddings: 

 𝑋𝐶𝐿𝑆 = [𝐶𝐿𝑆|𝑋′] (7) 

It is shaped as: 

 𝑋
𝑝𝑎𝑡𝑐ℎ𝑒𝑠′

= [𝐵,𝑁 + 1,𝐷] (8) 
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, where 𝑁+ 1 denotes the number of patches after adding the Classification Token, and 𝐷 is the size of 
the spatial dimension of each patch embedding (determined by the model itself). And the positional 

encoding is a learnable vector  𝑃𝐸 that adds positional information to each block, enabling the model to 
perceive the relative position of each block in the original image: 

 𝑋𝑃𝑂𝑆 = 𝑋𝐶𝐿𝑆 +𝑃𝐸 (9) 

𝑋𝑃𝑂𝑆 is the input to which the position vector has been added, after which it can be entered into the 
ViT Encoder. 

2.3.4.  ViT encoder. The ViT Encoder consists of multiple Transformer encoder layers stacked together, 
each layer is divided into two parts: a multi-head attention mechanism and a feed-forward neural 

network, and its structure is referenced to Alexey et al.'s study [5]. The architecture is demonstrated in 
Figure 1. 

 

Figure 1. Architecture of ViT encoder (Figure Credits: Original). 

The encoder processes the input sequence in several steps. First is layer normalization, where the 

input embedded sequence is first normalized by layers to normalize and stabilize the subsequent 
attention computation: 

 𝑋𝑛𝑜𝑟𝑚 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋𝑝𝑜𝑠) (10) 

The model then computes the attentional weights for each position in the input sequence through a 
multi-head self-attention (MHSA) mechanism and updates the representation of each position: 

 𝑋𝑎𝑡𝑡𝑛 = 𝑀𝐻𝑆𝐴(𝑋𝑛𝑜𝑟𝑚) (11) 

It is then added back to the original input via the residual connection: 

 𝑋′ = 𝑋𝑝𝑜𝑠 +𝐷𝑟𝑜𝑝𝑃𝑎𝑡ℎ(𝑋𝑎𝑡𝑡𝑛) (12) 

The updated representation is later passed through a KAN (replacing the original MLP here) to 
further extract features. Similarly, the output of the KAN is added back to the input via a residual 
connection: 

 𝑋𝑜𝑢𝑡 = 𝑋′ + 𝐷𝑟𝑜𝑝𝑃𝑎𝑡ℎ(𝐾𝐴𝑁(𝑋′)) (13) 

The above operation is repeated for each layer of the encoder. After stacking multiple layers of 
encoder, the final output contains global features that will be used for downstream classification tasks. 
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And in the last layer of the encoder, KAN will extract the classification markers that contain global 
information about the whole image and use them for the final classification task: 

 𝐶𝐿𝑆𝑜𝑢𝑡 = 𝑋𝑜𝑢𝑡[: ,0, : ] (14) 

2.3.5.  Output. Ultimately, the output 𝐶𝐿𝑆𝑜𝑢𝑡  is fed into a classifier header which maps the final 

predicted classification result to a probability distribution by fitting a Softmax function via KAN: 

 𝑙𝑜𝑔𝑖𝑡𝑠 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐻𝑒𝑎𝑑(𝐶𝐿𝑆𝑜𝑢𝑡) (15) 

 𝑃(𝑦 = 𝑐|𝑙𝑜𝑔𝑖𝑡𝑠) =
𝑒 𝑙𝑜𝑔𝑖𝑡𝑠𝑐

∑ 𝑒
𝑙𝑜𝑔𝑖𝑡𝑠

𝑐′
𝑐′

 (16) 

 �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝑦 = 𝑐|𝑙𝑜𝑔𝑖𝑡𝑠) (17) 

, where 𝑐 is the class label, 𝑃(𝑦 = 𝑐|𝑙𝑜𝑔𝑖𝑡𝑠) is the probability that the image belongs to class 𝑐, and �̂�  
is the final output of the model. 

3.  Experiment and Result 

3.1.  Dataset 
The dataset used in this paper was provided by the Emergency Department of Changzheng Hospital, 

Shanghai, China, in which all images were derived from patients with clinical pneumonia, including 
ultrasound videos of patients at several different periods, e.g., during the period of neocoronary 
pneumonia. Representative examples are demonstrated in Figure 2. And keyframe extraction and dataset 
filtering were performed by the authors of this paper and integrated. This dataset ensures clinical 
authenticity, maximizes the reproduction of data sampled in real clinics, and enables the most realistic 
testing of model performance. However, it is worth noting that the amount of data available for training 
is limited because of the privacy and limitations of the data (some frames do not respond properly to 

LUS), so the results derived from this experiment may also be partially affected, but it is not a hindrance 
to the judgment of the results. In this experiment, the training set has a total of 2846 samples and the 
validation set has a total of 567 samples, which are divided according to the ratio of 1:5, and there are 4 
classes (0-4 points). 

3.2.  Experimental settings 

The first experiment is used to test the performance of the two models on the lung ultrasound dataset. 
In this experiment, there are five main hyperparameters to focus on. The first is the number of epochs, 
due to the large number of parameters in ViT itself and the large amount of GPU memory it takes up, in 
this experiment the epoch is set to 200, which means that the model needs to traverse the dataset a total 
of 200 times. Since medical image data is limited, epoch does not need to be set a lot to compare the 
performance gap between KAN+ViT and ViT from the training results. Second is the batch size, in this 
experiment, the batch size is set to 32, which means that there are 32 dataset samples in each batch, and 
these 32 samples are processed in parallel and used to compute the gradient update of the model. Since 

the training set has 2846 samples and batch size 32, there should be 89 batches in each epoch. The 
models used are ViT and ViT with MLP replaced by KAN (ViT+KAN), respectively. Then, there is 
learning rate. In this experiment the authors set two learning rates, initial learning rate 0.0002 and final 
learning rate 0.0001, and used Cosine Annealing algorithm to adjust the learning rate dynamically [1]. 
Doing so makes the learning rate decrease as a cosine curve during training. The goal is to keep the 
model's learning rate high in the early stages of training to allow for rapid convergence; And the learning 
rate is gradually reduced at a later stage so that the model can converge more stably to a locally optimal 

solution. Finally, it is worth noting that since the visual model used for ultrasound imaging is quite 
specific, in order to ensure the accuracy of the experimental results, the authors did not use pre-trained 
weights for transfer learning in this experiment. 
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Figure 2. Representative examples of the ultrasound clinical imaging of the lungs (Figure Credits: 

Original). 

In another experiment, the authors attempted to conduct a performance comparison test on the Cifar-
10 dataset to compare the performance difference between MLP+ViT and KAN+ViT [10]. In this 
experiment, epoch was set to 50 and the rest of the parameters were consistent with the 3.2.1 experiment. 

The purpose of this experiment is in order to demonstrate that KAN+ViT still has better performance 
than ViT when using other types of datasets, and therefore does not require too many epoch numbers. 

3.3.  Evaluation criteria 
Both of the above experiments in this paper use two dimensions as the evaluation criteria for the model 
performance: the first one is the change of loss in training; the second one is the change of accuracy in 

the validation set. Combining these two dimensions, a comprehensive evaluation of the model 
performance can be made. 

3.4.  Performance comparison 

3.4.1.  Ultrasound clinical imaging of the lungs. As shown in Figure 3, the KAN+ViT model exhibits a 

significant advantage in terms of training loss (blue curve).  The training loss of the KAN+ViT model 
decreases rapidly at the beginning of training, and shows a stable decreasing trend throughout the 
training process. And with the increase of epoch, the curve decreases at a significantly higher rate than 

that of MLP+ViT, and finally reaches a lower loss level at the end of training (≈0.326). This suggests 
that the KAN+ViT model has a strong learning capability and is able to fit the training data effectively. 
In contrast, the MLP+ViT model (yellow curve) has a smoother decline in training loss in the later stages, 
and although it also continues to decline with the training process, the overall loss level is higher than 

that of the former (≈0.384).  
The comparison of validation accuracies further highlights the difference in generalization ability 

between the two models. The accuracy of the KAN+ViT model on the validation set rises rapidly at the 
beginning of training and reaches a high level close to 0.9 after about 100 epochs, and remains stable 

with small fluctuations in the subsequent training process, finally reaching 0.981. In contrast, the 
validation accuracy of the MLP+ViT model rises at almost the same rate in the early stage, but the 
growth rate tends to decrease with the increase of epochs. The rate of increase tends to decrease, and the 
accuracy rate finally reaches only the level of 0.951. 
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Figure 3. Model performance in lung ultrasound dataset (Figure Credits: Original). 

In summary, compared with the traditional MLP+ViT model, the KAN+ViT model performs better 
in both training loss and validation accuracy, showing stronger learning ability and generalization ability, 

indicating that KAN+ViT performs better in lung ultrasound image classification compared with the 
traditional MLP+ViT. 

 

Figure 4. Model performance in Cifar-10 dataset (Figure Credits: Original). 

3.4.2.  Cifar-10. As shown in Figure 4, in this experiment, the authors compare the performance of two 
models, KAN+ViT and MLP+ViT, on the Cifar-10 training set and validation set.  From the comparison 
of training loss, the training loss of KAN+ViT decreases significantly faster than that of MLP+ViT and 
shows a more stable decreasing trend throughout the training process, eventually reaching a lower 
training loss (<0.6). This suggests that KAN+ViT has a better fit on the training data and is able to learn 

the feature patterns in the data better. In contrast, the training loss of MLP+ViT decreases slightly slower 
and reaches a final loss between 0.6 and 0.7, which is clearly greater than that of KAN+ViT. In the 
comparison of validation set accuracies, the accuracy of the KAN+ViT model rises rapidly in the early 
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stages of training and reaches a high and more stable level (≈0.75) in the later stages of training; 
However, the validation set accuracy of MLP+ViT, while rising more slowly and eventually reaching a 
similar level to the KAN+ViT model, achieves significantly lower accuracy than the former.   
Overall, KAN+ViT outperforms MLP+ViT in terms of fitting on the Cifar-10 training set, while the 
accuracy on the validation set remains high, showing a good balance, as demonstrated in Table 1. 
Combined with Experiment 3.4.1, it can be demonstrated that KAN+ViT generally possesses better 

performance than traditional MLP+ViT. 

Table 1. Comparison of models on CIFAR-10, and lung clinical imaging datasets. 

Model Metrics Lung Clinical Imaging Dataset Cifar-10 

KAN+ViT 
Loss 0.326 0.573 
Acc 0.981 0.749 

KAN+ViT 
Loss 0.373 0.696 
Acc 0.951 0.717 

4.  Conclusion 

In summary, this paper realizes a new network architecture of KAN+ViT by replacing the MLP part of 

the traditional ViT with the higher performance KAN, and completes the exploration of the performance 
of this new network architecture and the performance comparison with the traditional MLP+ViT by 
designing experiments on different datasets. In this paper, KAN+ViT presents better performance 
compared to MLP+ViT on lung clinical ultrasound dataset and Cifar-10 respectively. Thus this study 
demonstrates the excellent promise of utilizing KAN+ViT in the field of visually assisted clinical 
diagnosis and the potential of the new architecture (KAN+ViT) over the traditional ViT architecture. 

References 

[1] Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., ... & Tegmark, M. (2024). 
Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756. 

[2] Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—
a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 
2627-2636. 

[3] Cheon, M. (2024). Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. 
arXiv preprint arXiv:2406.14916. 

[4] Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., ... & Tao, D. (2022). A survey on vision 
transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1), 87-110. 

[5] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & 
Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at 
scale. arXiv preprint arXiv:2010.11929. 

[6] Ma, H., Yan, W., & Liu, J. (2020). Diagnostic value of lung ultrasound for neonatal respiratory 

distress syndrome: a meta-analysis and systematic review. Medical ultrasonography, 22(3), 
325-333. 

[7] Smit, M. R., Mayo, P. H., & Mongodi, S. (2024). Lung ultrasound for diagnosis and management 
of ARDS. Intensive care medicine, 1-3. 

[8] Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. 
Neurocomputing, 452, 48-62. 

[9] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: 

analysis, applications, and prospects. IEEE transactions on neural networks and learning 
systems, 33(12), 6999-7019. 

[10] Cifar-10 Dataset. URL: https://www.cs.toronto.edu/~kriz/cifar.html. Last Accessed: 2024/08/27. 
 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241181 

116 


