
 

 

Advancements in Diffusion Models for Image Generation: A 

Comparative Analysis of DDPM, LDM, and DDIM 

Zixiang Jin 

School of information, Xiamen University, Xiamen, China 

37220222203643@stu.xmu.edu.cn 

Abstract. This research provides a thorough exploration of diffusion models in image generation, 

comparing various methodologies to assess their efficacy and efficiency. The study begins with 

an introduction to foundational technologies and key concepts, progressing through an analysis 

of basic and advanced models, including Latent Diffusion Models (LDMs), Denoising Diffusion 

Implicit Models (DDIMs), and control models. The research evaluates these models based on 

their performance, computational efficiency, and future development potential. The review 

details the evolution of diffusion models from early stochastic processes to their current status 

as advanced generative models. Key principles, such as iterative noise addition and removal, are 

examined to understand the transformation from simple distributions to complex data 

representations. Innovations enhancing model efficiency, including advancements in score 

matching and neural network integration, are discussed. A thorough comparative analysis 

highlights the strengths and limitations of each model. The study identifies ongoing challenges 

such as interpretability and computational cost and proposes future research directions to address 

these issues. The findings aim to guide researchers and practitioners in advancing diffusion 

model technologies, offering insights into their impact on image generation and potential future 

developments. 
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1.  Introduction 

The swift progress in deep learning has catalyzed a significant shift in how complex data generation 

tasks are approached, with diffusion models [1,2] emerging as a prominent class of generative models. 

Diffusion models, inspired by non-equilibrium thermodynamics [3], have gained traction due to their 

ability to iteratively transform simple noise distributions into complex, high-dimensional data 

representations. This method has been widely used across different fields, including image synthesis [4], 

text-to-image generation [5], and molecular design [6], demonstrating its versatility and robustness as 

well as medical image reconstruction [7]. Given the growing importance of these models, it is crucial to 

comprehensively review their development, applications, and potential challenges to guide future 

research and practical implementations.  

Nowadays, the evolution of diffusion models has seen substantial improvement aimed at enhancing 

their efficiency and accuracy. Early methods, primarily based on Markovian processes, utilized 

Gaussian noise to iteratively perturb data samples. Although effective, these techniques were 

computationally expensive, hindering scalability. The introduction of innovations such as score 
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matching and denoising diffusion probabilistic models (DDPMs) marked a notable leap forward by 

refining noise estimation, leading to better performance. Moreover, integrating neural network 

architectures with diffusion models has enabled the generation of increasingly complex and diverse data 

types. 

Despite these advancements, several challenges persist. Model interpretability remains a critical issue, 

as the complex processes governing diffusion models are frequently opaque, making it challenging to 

understand how decisions are made. Training stability is another ongoing concern, as diffusion models 

can be prone to instability, especially when dealing with large-scale or complex datasets. The high 

computational demands associated with these models also pose significant challenges, limiting their 

practical application in resource-constrained environments. 

Looking forward, the field is actively investigating solutions to these challenges. Researchers are 

exploring more efficient training algorithms, improved noise estimation techniques, and better 

integration with neural network frameworks to enhance model stability and interpretability. Additionally, 

there is a growing interest in developing hybrid models that combine the strengths of diffusion models 

with other generative approaches, potentially offering a more balanced trade-off between accuracy, 

efficiency, and computational resource requirements. 

This review targets on offer an in-depth analysis of diffusion models, focusing on their theoretical 

foundations, technological advancements, as well as diverse applications. The review is structured to 

systematically explore diffusion models, starting with their origins from early stochastic processes and 

non-equilibrium thermodynamics to their current status as powerful generative models. The first section 

examines the historical development of diffusion models, tracing their evolution and highlighting the 

core techniques employed in their advancement. Key principles, such as the iterative process of noise 

addition and removal, are explored to understand how simple distributions are transformed into complex 

data representations. Innovations enhancing the efficiency and effectiveness of diffusion models are 

discussed, including advancements in score matching, DDPMs and the integration of neural network 

architectures. A comparative analysis of key technologies is presented, assessing their performance 

across various tasks and identifying strengths and limitations. The review also addresses ongoing 

challenges, such as interpretability, training stability, and computational cost, while offers directions for 

future research. The conclusion summarizes key findings and offers insights into future developments, 

aiming to guide researchers and practitioners in advancing the field of diffusion models. 

2.  Methodology 

2.1.  Dataset description and preprocessing  

In the context of diffusion models, various datasets have been extensively used to benchmark and 

evaluate the performance of these models across different tasks. Some of the most commonly employed 

datasets include Canadian Institute for Advanced Research (CIFAR)-10, ImageNet and so on, each 

offering distinct characteristics that cater to specific application areas. For instance, the CIFAR-10 

dataset [8] consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class, commonly 

used for image classification and generation tasks. ImageNet [9], a large-scale visual dataset with over 

14 million images categorized into thousands of classes, provides a standard benchmark for high-

resolution image generation.  

Preprocessing is a crucial step in preparing these datasets for use in diffusion models. For example, 

images are resized or cropped to a fixed resolution, such as 64*64 or 256*256 pixels. Normalization of 

pixel values, often to the range [-1, 1] or [0, 1], is also a standard procedure to ensure consistency in 

input data. Furthermore, various data augmentation methods, including random cropping, flipping, and 

color jittering, are utilized to enhance the variety and richness of the training data. thereby improving 

the model’s generalization capabilities. These preprocessing steps are essential for optimizing the 

datasets for diffusion model training, ensuring that the models can accurately capture the fundamental 

data distribution and perform well across various generative tasks. 
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2.2.  Proposed approach  

This research aims to explore diffusion models in image generation by comparing various methods. 

Author’s approach begins with a background introduction to the key technologies and their core ideas. 

Author then analyzes basic models, highlighting their strengths and limitations. The process also has an 

examination of advanced models including Latent Diffusion Models (LDMs), Denoising Diffusion 

Implicit Models (DDIMs) and control model followed by a comprehensive comparison of results. This 

will help the author to evaluate the performance, computational efficiency, and potential for future 

developments in the field. The overall structure ensures a thorough understanding of each model's 

impact on image generation, leading to informed future prospects (see in Figure 1). 

 

Figure 1. The pipeline of this study. 

2.2.1.  Introduction of basic techniques. DDPMs introduced by Ho in 2020, represent a significant 

advancement in generative modeling. These models operate by reversing a forward diffusion process, 

where data is systematically distorted through the addition of Gaussian noise over several time steps. 

The forward process is modeled as a Markov chain, with each step adding a small amount of noise, 

resulting in a progressively noisier and less recognizable version of the original data. The key innovation 

of DDPMs is their ability to reverse this process. They achieve this by gradually denoising the corrupted 

data in a step-by-step manner to regenerate the original clean data. The forward diffusion process begins 

with a data point sampled from the true data distribution. At each time step, added Gaussian noise, 

produces increasingly noisy data points. This sequence is governed by variance schedules that control 

the noise levels at each step.  

The objective of DDPMs is to learn the reverse denoising process to reconstruct the original data 

from the noisiest version. This is accomplished by estimating and subtracting the noise added at every 

steps iteratively. The reverse process is typically modeled by a neural network, often a U-Net or similar 

architecture, which is trained to estimate the noise at each step using the current noisy data point. 

DDPMs are renowned for their ability to generate highly diverse and realistic data, particularly in image 

synthesis. Unlike Generative Adversarial Networks (GANs), DDPMs do not require adversarial training, 

leading to more stable training processes and fewer issues with mode collapse. This makes DDPMs a 

powerful and stable alternative for many generative tasks, as shown in the Figure 2. 
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Figure 2. Implementation framework of diffusion model. 

2.2.2.  LDMs. LDMs [10] are a notable evolution in the diffusion model family, used to reduce the 

computational complexity while maintaining high-quality output. LDMs function within a reduced-

dimensional latent space, rather than working directly within the high-dimensional data space. This 

method starts by transforming the data into a compressed latent representation. The diffusion process is 

later applied within this latent space before finally decoding it back to its original dimensionality.  

The primary advantage of LDMs is their capability to generate detailed and high-resolution outputs 

with fewer computational resources. By performing the diffusion process in a compressed space, the 

model efficiently learns the essential features of the data, which allows for faster training and sampling. 

This makes LDMs especially effective for tasks such as high-resolution image synthesis and video 

generation [11]. 

LDMs provide a scalable and efficient approach to generative modeling, making them a mainstream 

choice in the field of diffusion models. They offer a balance between computational efficiency and 

output quality, positioning them as a preferred technique for large-scale generative tasks. 

2.2.3.  DDIMs. DDIMs [12] are an advanced iteration of diffusion models that optimize the sampling 

process, making it more efficient while maintaining high output quality. Introduced by Song et al., 

DDIMs adapt the reverse diffusion process to be deterministic rather than stochastic, which leads to 

faster and more predictable generation. 

In traditional diffusion models like DDPMs, the reverse process involves random sampling, which 

requires numerous iterations to achieve a high-quality result. DDIMs change this by introducing a 

deterministic mapping that directly predicts the noise-free data from the noisy intermediate states. This 

deterministic approach is implemented by adjusting the noise schedule and the denoising step, allowing 

the model to infer the final image with fewer iterations. Essentially, the model can3ed map noisy data 

back to its clean form in a more direct and efficient manner. 

The key advantage of DDIMs lies in their ability to generate samples in significantly fewer steps 

without losing image quality. This reduction in computational cost makes DDIMs highly practical for 

applications that demand rapid generation, such as real-time image synthesis or interactive Artificial 

Intelligence (AI) systems. Additionally, the deterministic nature of DDIMs ensures more consistent 

outputs across different runs, which is particularly beneficial in scenarios where reproducibility and 

precision are important. 

2.2.4.  Conditional diffusion models. Conditional Diffusion Models [11] represent an advanced 

approach within the diffusion model framework, particularly tailored for tasks like text-to-image 

generation. In this method, the generative process is guided by specific inputs, such as text descriptions, 

to produce outputs that are both high-quality and closely aligned with the given conditions. 

The implementation of conditional control in diffusion models, involves integrating text-based 

conditioning signals at various stages of the diffusion process. This is primarily achieved through the 

use of cross-attention mechanisms, where the text features influence the denoising process by 

modulating the intermediate states of the model. The text features are extracted using a pre-trained 
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language model and then embedded into the diffusion process, ensuring that each step of the denoising 

aligns with the semantic content of the input text. 

This conditional setup allows the model to generate images that reflect the detailed nuances of the 

text, providing more flexibility and control over the generated outputs. The approach also enhances the 

diversity of the generated images, as the conditioning allows for varied interpretations of the same 

textual input, which is particularly useful in creative applications. By guiding the generation process 

with textual descriptions, the model is able to produce images that are not only visually coherent but 

also semantically relevant to the input conditions. 

3.  Result and Discussion  

In the conducted study, an improved Cycle GAN model was employed with the aim of performing 

automatic colorization of black-and-white pictures. The model combines a GAN with the cycle 

consistency loss, enabling high-quality image-to-image translation between black-and-white and colour 

images. The training dataset consisted of over 1,000 images, which included various categories of black-

and-white images paired with corresponding real colour image labels. 

3.1.  Result  

The generated samples demonstrate the effectiveness of DDPMs across various datasets. Figure 3 

showcases DDPMs' capability to generate high-quality facial images on the CelebFaces Attributes High 

Quality (CelebA-HQ) dataset at a resolution of 256 × 256. The faces appear realistic, maintaining 

diversity across different ethnicities and facial features. Figure 4 illustrates the model's performance on 

the LSUN Church and Bedroom datasets. The model successfully generates complex structures like 

churches and detailed indoor scenes, highlighting its ability to capture intricate details in diverse 

environments. 

 

Figure 3. Generated samples of DDPMs on CelebA-HQ 256 × 256 [1]. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/104/20241184 

100 



 

 

 

Figure 4. LSUN Church samples and LSUN bedroom samples of DDPMs [1]. 

 

Table 1 compares the performance of different diffusion models across various datasets. The table 

highlights that DDPM achieves relatively low Flame Ionization Detector (FID) scores on Large-Scale 

Scene Understanding (LSUN) datasets (7.89 for Church and 4.90 for Bedroom), indicating high-quality 

image generation, though it requires substantial computational resources. In contrast, LDM exhibits 

lower FID scores (e.g., 2.95 on LSUN Bedroom), showcasing its suitability for high-resolution image 

generation with reduced computational complexity. However, LDM does show slight distortions in 

some high-resolution images. DDIM offers faster sampling and consistent generation, yet it has higher 

FID scores on datasets like CIFAR10 (13.36), demonstrating a trade-off between speed and image 

quality. 

These data suggests that while DDPM excels in quality, its resource demands make it less efficient. 

LDM strikes a balance between quality and efficiency, particularly in high-resolution tasks, while DDIM 

prioritizes speed at the expense of quality in more complex datasets. 

Table 1. Comparison of different models’ performance on each dataset [1,10-12]. 

Model Dataset FID score Pre Recall Feature description 

DDPM LSUN Church 7.89 - - High-quality image generation but 

High computational resource 

consumption 
LSUN Bedroom 4.90 - - 

LDM LSUN Church 4.02 0.64 0.52 Lower computational complexity, 

suitable for high-resolution 

generation, but small distortions in 

high-resolution images 

LSUN Bedroom 2.95 0.66 0.48 

CelebA-HQ 5.11 0.72 0.49 

FFHQ 4.98 0.73 0..50 

DDIM CIFAR10 13.36 - - Faster sampling, more consistent 

generation, but Higher FID scores 

on some datasets 
CelebA-HQ 3.51 - - 

3.2.  Discussion  

The analysis of DDPM, LDM, and DDIM underscores their distinct strengths and areas for improvement. 

DDPM is distinguished by its capability of generating high-quality, realistic images across diverse 

datasets, such as CelebA-HQ, but this comes at the cost of substantial computational resources. Its 

performance on datasets like LSUN Church and Bedroom highlights its proficiency in capturing intricate 

details, yet the high computational demand poses challenges for scalability and efficiency in practical 

applications. 
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By contrast, LDM offers a more balanced approach. It achieves lower FID scores, indicating superior 

image quality with less computational complexity, making it suitable for high-resolution image 

synthesis. However, occasional distortions in the generated images suggest that there is still room for 

refinement, particularly in handling high-resolution details. LDM’s versatility makes it a promising 

candidate for tasks that require a balance between quality and efficiency, such as content generation and 

high-resolution image editing. 

DDIM stands out for its speed in sampling, offering a faster generation process compared to DDPM 

and LDM. This makes it advantageous in time-sensitive applications. However, the trade-off is evident 

in the higher FID scores observed on complex datasets like CIFAR10, where the emphasis on speed 

slightly diminishes image quality. Future work could explore optimizing DDIM to maintain fast 

sampling while enhancing image fidelity. 

In terms of future research directions, optimizing the computational efficiency of DDPM without 

compromising image quality remains a key challenge. Hybrid models that integrate the strengths of 

DDPM, LDM, and DDIM could be a potential avenue, leveraging the high quality of DDPM, the 

efficiency of LDM, and the speed of DDIM. Additionally, exploring adaptive architectures that adjust 

computational complexity based on the task requirements could further enhance the applicability of 

these models in various domains, such as real-time video generation, large-scale content creation, and 

interactive AI systems. 

Current challenges also include addressing the inherent trade-offs between speed, quality, and 

computational demands. Innovative solutions, such as incorporating more advanced network 

architectures, leveraging transfer learning, or combining these models with other generative approaches 

like GANs, could help mitigate these issues. Furthermore, improving the robustness of these models in 

handling diverse and complex datasets will be crucial for their broader application in fields ranging from 

entertainment and media to scientific simulations and medical imaging. 

4.  Conclusion  

This study presents an innovative approach to improving image generation quality while optimizing 

computational efficiency by exploring DDPM, LDM, and DDIM in high-resolution tasks. The study 

systematically analysis and compares these models across various datasets, evaluating their performance 

in generating high-quality images while balancing speed and resource consumption. Key factors 

assessed include image quality, computational demands, and sampling efficiency. The experiments 

reveal that DDPM excels in generating high-quality images but demands substantial computational 

resources. In contrast, LDM strikes a balance with lower FID scores and moderate resource usage. 

DDIM, while offering faster sampling, shows slightly higher FID scores, especially on complex datasets. 

Future research will aim at enhancing the computational efficiency of these models. The goal is to 

develop hybrid models that integrate the strengths of DDPM, LDM, and DDIM, aiming to maintain high 

image quality while improving speed and reducing resource requirements. Further investigation will 

also assess the adaptability of these models for real-time applications and their robustness across a 

broader range of diverse and complex datasets. 
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