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Abstract. The multi-armed bandit problem is a well-established model for examining the 
exploration/exploitation trade-offs in sequential decision-making tasks. This study focuses on 
the logistic bandit, where rewards are derived from two distinct datasets of movie ratings, 
ranging from 1 to 5, each characterized by different variances. Previous research has shown that 
regret bounds for multi-armed bandit algorithms can be unstable across varying environments. 
However, this paper provides new insights by demonstrating the robustness of the Minimax 
Optimal Strategy in the Stochastic (MOSS) algorithm across environments with differing reward 
variances. Unlike prior studies, this research shows that MOSS maintains superior performance 
in both dense and sparse reward settings, consistently outperforming widely used algorithms like 
UCB and TS, particularly in high variance conditions and over sufficient trials. The findings 
indicate that MOSS achieves logarithmic expected regret for both types of environments, 
effectively balancing exploration and exploitation. Specifically, with K arms and T time steps, 
the regret R(T) of MOSS is bounded by 𝑂(#𝐾𝑇 log𝑇). This work highlights MOSS as a robust 
solution for handling diverse stochastic conditions, filling a crucial gap in the understanding of 
its practical adaptability across different reward distributions. 

Keywords: bandits, MOSS, sparse environment, regret bounds. 

1.  Introduction 
The Multi-Armed Bandit (MAB) problem is a fundamental framework in decision theory and machine 
learning that captures the essence of the exploration-exploitation trade-off. Originating from the analogy 
of a gambler faced with multiple slot machines (referred to as "arms"), each with an unknown probability 
distribution of rewards, the objective of the MAB problem is to develop a strategy that maximizes 
cumulative rewards over time. This challenge arises in various fields, including online advertising, 
clinical trials, and dynamic pricing, where decision-makers must continuously choose among competing 
options with uncertain outcomes. 

The classical MAB problem has been extensively studied[1, 2], either for the methods to identify the 
best arm or different strategies to maximize the cumulative reward given conditions, leading to the 
development of numerous algorithms designed to balance the need for exploration (trying out different 
arms to learn about their rewards) and exploitation (choosing the best-known arm to maximize 
immediate reward)[3]. Among these researches, multiple powerful algorithms can solve an MAB 
problem efficiently[4]. But there is only a few of researchers have ever mentioned how to maintain the 
performance of an algorithm at a level when facing different variances in the distribution of the rewards, 
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or how to get the lowest regret if we are testing on a reversed environment setup. The environment in 
which these algorithms operate can significantly influence their performance. Particularly, the nature of 
the reward distributions—whether they are dense (with small variance) or sparse (with large variance)—
can pose unique challenges[5]. In dense environments, where the rewards of different arms are close in 
value, distinguishing between the best and suboptimal arms requires subtle exploration strategies. 
Conversely, in sparse environments, where some arms offer significantly higher rewards than others, 
the algorithm must efficiently identify and exploit these high-reward arms despite the noise introduced 
by large variance. There are several minimax optimal algorithms designed by other researchers for 
dealing with this kind of situation[6, 7]. 

In this paper, we will focus on The Minimax Optimal Strategy in the Stochastic (MOSS) algorithm, 
which has emerged as a robust solution within this context. MOSS is designed to perform well across 
various reward distributions by minimizing the worst-case regret—the difference between the reward 
collected by the algorithm and the reward of the optimal strategy. This minimax approach ensures that 
the algorithm remains effective even in the most challenging scenarios, making it particularly well-
suited for environments with both dense and sparse reward structures[8, 9]. 

This research seeks to explore the application of the MOSS algorithm in both dense and sparse 
environments, analyzing its performance and adaptability in these contrasting settings. By understanding 
how MOSS navigates the complexities of varying reward distributions, this study aims to contribute to 
the broader field of bandit algorithms, providing insights that could enhance their applicability in real-
world scenarios where reward variances play a crucial role[10, 11]. 

The significance of this research lies in its potential to bridge a critical gap in the application of bandit 
algorithms. While MOSS has been shown to perform well in theoretical analyses, its behavior in 
environments characterized by dense and sparse reward distributions warrants further exploration. By 
systematically studying these environments, this study aims to: Enhance the understanding of MOSS's 
robustness across different types of reward distributions; Provide practical insights for applying MOSS 
in real-world scenarios, particularly in domains where reward variances can be extreme; Guide the 
development of new algorithms that can better adapt to diverse environments, ultimately improving 
decision-making processes in various applications. 

Through this research, the aim is to contribute to the ongoing development of more versatile and 
efficient bandit algorithms, thereby expanding their applicability in increasingly complex and uncertain 
environments. 

2.  The multi-armed bandit problem 
This paper addresses the stochastic version of the multi-armed bandit (MAB) problem, where a machine 
with 18 arms must be played sequentially at each time step 𝑡 = 1, 2, 3, …	. Each arm, when pulled, 
dispenses a reward derived from 1 to 5 with a fixed probability. These rewards are independent 
identically distributed and observable right after each play. 

The strategy of the MAB algorithm is to select which arm to pull at every time step t, informed by 
the results of all previous t − 1 lever pulls. The objective is to optimize the sum of expected rewards 
over T plays, i.e., E,∑ µ!(#)%

#&' /, where i(t) represents the arm chosen at time t. Here,  µ!	represents the 
expected reward for arm i. The goal is typically to maximize the cumulative reward, making it practical 
to evaluate the algorithm's performance in terms of regret, a metric that reflects the regret incurred from 
not always choosing the best arm. 

To elaborate on the notion of regret, let µ∗ be the highest expected reward among all arms, and ∆!=
µ∗ − µ! represent the regret associated with choosing arm i over the optimal one. Additionally, let k!(t) 
denote the number of times arm i has been pulled up to time t − 1. The aggregate regret after T time 
steps, E[R(T)], can then be defined as: 

𝐸[𝑅(𝑇)] = 𝐸,∑ 𝜇∗ −)
*&' 𝜇+(*)/ = ∑ ∆+ ∙ 𝐸[𝑘+(𝑡)]+                                     (1) 
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2.1.   Literature Review 
The multi-armed bandit (MAB) problem has been widely studied due to its relevance to decision-making 
under uncertainty, particularly in fields such as machine learning, operations research, and 
recommended advertisements. The MAB problem focuses on the exploration-exploitation trade-off. By 
deciding between exploiting different unknown reward sources, people can discover higher payoffs 
potentially. There are several algorithms developed over the decades to tackle this problem, with each 
addressing different aspects of uncertainty, reward distribution, and computational efficiency. 

2.1.1.  Classical Algorithms 
One of the earliest solutions to the MAB problem was the ε-greedy algorithm (Sutton & Barto, 1998). 
It emphasizes choosing a random arm with a small probability ε and selecting the arm with the highest 
expected reward otherwise to balance the trade-offs. This simple approach can indeed suffer from 
inefficiency, particularly in scenarios with non-stationary rewards or environments that require more 
adaptive strategies. 

2.1.2.  Bayesian Approaches 
Bayesian methods have become popular for solving the MAB problem by using probability distributions 
to model uncertainty about rewards. The most famous Thompson Sampling(Thompson, 1933) maintains 
a posterior distribution over the expected rewards for each arm and selects arms based on sampling from 
these distributions. This algorithm has been shown to perform well in both stationary and non-stationary 
settings due to its natural incorporation of uncertainty. It is particularly effective when there is limited 
initial information, since the estimation of each arm’s average reward updates over time as the algorithm 
explore more which leads to improved decision-making. 

2.1.3.  Upper Confidence Bound (UCB) Algorithms 
A major breakthrough in MAB algorithms came with the introduction of the Upper Confidence Bound 
(UCB) family of algorithms(Auer et al., 2002). The UCB algorithm selects arms based on both the 
estimated mean reward and an upper confidence bound that accounts for the uncertainty in the estimates. 
The original UCB algorithm uses the following criterion for selecting the i-th arm at round t: 

𝑎* = argmax+(�̂�+ +G
2ln(𝑡)
𝑁+(𝑡)

) 

where 𝝁L𝒊 is the estimated mean reward for arm i, t is the total number of rounds played, and 𝑵𝒊(𝒕) is the 
number of times arm i has been played. UCB is known for its logarithmic regret bounds in stationary 
environments. Several extensions of the UCB algorithm have been proposed to handle different reward 
structures, such as UCB1-Tuned, which adapts the confidence intervals based on the observed variance 
of rewards. UCB-based algorithms are particularly effective in scenarios with low variance rewards, 
where it is important to balance exploration efficiently with exploitation. 

2.1.4.  Algorithms for Adversarial and Non-Stationary Settings 
In more complex environments, where the reward distributions may change over time or where 
adversarial conditions exist, classical algorithms often fail to maintain optimal performance. Algorithms 
like EXP3 (Exponential-weight algorithm for Exploration and Exploitation) have been developed for 
adversarial settings, where the rewards are not drawn from a fixed distribution but may be manipulated 
by an opponent. EXP3 uses a multiplicative weight update strategy and provides robust performance 
guarantees in such competitive environments. 

2.1.5.  Gaps and the Development of MOSS 
While the above algorithms have made significant contributions to the MAB literature, many of them 
struggle in settings with unknown or large time horizons, as well as in environments where the variance 
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of rewards is either very high or very low. Algorithms like UCB are well-suited for dense reward 
environments, but they may perform sub-optimally in sparse environments with high reward variability. 

To address this, Minimal Optimal Strategy for Stochastic Bandits (MOSS) was introduced by 
Audibert and Bubeck. MOSS is designed to improve performance in environments where rewards are 
sparse or highly variable. Unlike classical UCB, MOSS applies an adjusted confidence bound that does 
not rely on prior knowledge of the time horizon, making it more robust in practical applications. MOSS 
also achieves near-optimal regret bounds across a wide range of settings, making it particularly useful 
in domains where classical UCB algorithms might struggle due to the unknown length of the decision 
process. 

2.2.  Methodology 
To perform a more accurate experiment, this study designed each of the comparison algorithms in the 
following settings. In the ETC algorithm, this experiment dedicates 10% of the total trials (10,000 trials) 
to the exploration phase representing a strategic balance. This allocation is designed to optimize the 
trade-off between the inherent regret incurred during the exploration period and the benefits gained from 
accurately identifying the most rewarding arm to commit to in subsequent trials. By limiting the 
exploration phase to 10%, ETC efficiently utilizes enough trials to gather sufficient data on the 
performance of each arm, without excessively prolonging the exploration at the expense of exploiting 
the best-performing arm. The reason for choosing this proportion is particularly advantageous as it 
provides a substantial sample size to overcome variability while preventing the waste of opportunities 
to accrue rewards from the best arm. 

In the UCB and the AO-UCB algorithm, this research chooses l = 4 as a parameter setting that plays 
a critical role in enhancing the algorithms' exploration capabilities. By setting l at this level, the 

exploration term in the formula P-∙-/0(#)
1!(#)

 is amplified. This significantly increases the algorithms' 

propensity to explore those less frequently chosen arms, giving a balanced compromise between 
excessive exploration and sufficient exploitation. This heightened exploration is beneficial in 
environments where the reward distributions are highly variable, as it allows the algorithms to gather 
more comprehensive data about all available options. Thus choosing l = 4 provides a well-considered 
balance that leverages aggressive yet controlled exploration to optimize performance in stochastic 
settings. 

2.3.  MOSS 
Firstly, let us outline the MOSS (Minimax Optimal Strategy in the Stochastic case) algorithm for the 
multi-armed bandit problem, where each arm i of a slot machine yields a reward within [1, 5] that follows 
a fixed distribution each in a sparse and dense environment. This paper also introduces a feature of this 
algorithm that makes it handle welly to complex environments of the distribution of the rewards between 
different arms, enabling its application to a broader range of stochastic bandit problems. 

MOSS maintains a non-Bayesian approach, focusing on achieving minimax optimal regret, which is 
effective for settings with unknown reward distributions. Recall that the regret in the multi-armed bandit 
problem is defined as the difference between the expected total reward from always playing the best 
arm and the expected total reward from the strategy employed by the algorithm. This framework is 
advantageous for bandit problems as it leads to robust strategies across different variance levels of 
rewards. 

The mathematical foundation of MOSS is encapsulated by the minimization of the upper bound of 
cumulative regret. This upper bound is calculated as: 

𝑅(𝑇) = 𝑂RS𝐾𝑇 log 𝑇V                                                    (2) 
where K is the number of arms, and T is the number of time steps. MOSS optimizes the allocation of 
plays among the arms to minimize this upper regret bound. The selection mechanism for each arm is 
adapted at each step by estimating the lower confidence bound of the expected rewards, which is 
adjusted for each arm based on the number of times it has been played: 
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𝐵+(𝑡) = �̂�+(𝑡) − P
2 -/0(*)
34"(*)

                                                            (3) 

where µX!(t) is the empirical mean of the rewards obtained from arm i, and k!(t) is the number of times 
arm i has been played up to time t. The arm with the highest value of B!(t) is chosen to balance the 
exploration and exploitation trade-off. The algorithm of MOSS is summarized as below. 

Algorithm: MOSS for Stochastic Bandits 

Initialize: 

total_count=0 

estimates[]=0 for all i (estimates of rewards) 

counts[]=0 for all i (count of selections for each arm) 

regrets[] (to track cumulative regrets) 

ucb_list[]=0 for all i (upper confidence bounds) 

foreach t=1, 2, …, num_steps: 

if total_count < K: 

k=total_count 

(exploration phase) 

else: 

 k=argmax(ucb_list[i]) 

 (exploitation phase) 

estimates[k] += 5678*+9:*78[4]
=/>1#?[@]

 

ucb_list[k] = estimates[k] + A
3
× BC×-/0	(FGH	(',JK9_8*7M8/(O×PQKJ*8[4])))

PQKJ*8[4]
 

update total_count, counts[k], and regrets[k] repectively 

End Loop 

3.  Experiment Design 
Two environments of stochastic stationary bandits are established, with fixed reward distributions for 
each arm in both environments. This paper only considers dense and sparse environments because they 
are the two most common features of datasets in the real world and all kinds of problems are of the same 
category by them. 
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3.1.  Dense and Sparse Environment 
In the context of multi-armed bandit problems, we refer to a dense environment as a scenario where the 
reward of available arms has less standard deviation, as the true mean reward of each arm is close to 
each other. The challenge intensifies as the algorithm must make decisions from a substantially larger 
set of options with limited opportunity to sample each one thoroughly. This increases the complexity of 
achieving optimal exploration and exploitation, as the probability of selecting the best arm decreases 
and the need for effective decision-making strategies becomes critical. The dense dataset of this study 
is shown in Figure 1. 

Sparse environments present a contrasting scenario where there is a limited amount of arms that have 
great true mean rewards, while most of the others have significantly smaller true mean rewards 
compared to those. In such settings, the regret from choosing suboptimal arms can be affected badly, 
making the algorithm have a larger overall regret. But with the right exploration method, it might 
enhance the algorithm’s ability to explore each arm thoroughly facilitating a more robust estimation of 
the reward distributions and potentially leading to more effective exploitation of the best-performing 
arms. The sparse dataset of this study is shown in Figure 2. 

   
Figure 1. Average rating of each genre from        Figure 2. Average rating of each genre from 
on all movies in the dense environment.       on all movies in the sparse environment. 

The reason for choosing these two environments is to illustrate the robustness of the MOSS algorithm, 
testing which algorithms mentioned before have the best overall performance when facing the two kinds 
of datasets.  

3.2.  Method 
To illustrate the advantage of the MOSS algorithm, comparison plots among ETC, UCB, AO-UCB, TS, 
and MOSS will be drawn, by setting the number of trials to 100000 and comparing the cumulative regret 
of all five algorithms.  

To mitigate the effects of randomness and enhance the reliability of the findings, 10 independent 
experiments will be conducted to calculate the average regret. This approach is crucial because 
randomness in experimental outcomes can lead to variability which results in incorrect conclusions. 
Since each experiment involves stochastic elements—the random selection of movie ratings is based on 
their probability distribution, which can introduce noise into the results. By running multiple 
independent trials and averaging their outcomes can efficiently reduce the influence of any single outlier 
caused by chance. This method averages across experiments helps to smooth out anomalies and provides 
a more accurate estimation of the algorithms’ expected behavior under typical environments. 
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4.  Results 
Figure 3 is the curve of cumulative regret with respect to the number of trails in dense environment. The 
blue curve is ETC, orange is UCB, green is AO-UCB, red is TS, and the purple is MOSS. 

Figure 4 is the same curve of the left but tested on sparse environment to prove that the MOSS is 
also O(SKT log T) and robustness. Note that in both graphs MOSS outperforms all the algorithms when 
the trails are large enough (total trails 100000 here with averaging 10 experiments). 

 
Figure 3. Cumulative regrets in each trail                    Figure 4. Cumulative regrets in each trail 
of the five algorithms in dense environment.                of the five algorithms in sparse environment. 

To look more closely at the graph, a better way is to extract the cumulative regrets of each algorithm 
at the very last round and make them in the Table 1. 

Table 1. Cumulative regret of five algorithms on different environments. 

algorithm 
environment ETC UCB AO-UCB TS MOSS 

dense 2458.63 8271.54 10972.89 2599.97 2563.07 
sparse 10878.45 3120.78 4035.26 1333.91 1292.30 

 
In the dense environment, MOSS performs well with a cumulative regret of 2563.07, indicating its 

robustness in settings with small reward variance. ETC seems to have a smaller cumulative regret but 
with the increase of experiments, the average regret over experiments increases since it has the potential 
to choose the sub-optimal arm in the commit phase. UCB and AO-UCB struggle significantly in this 
environment, while TS shows moderate performance. In the sparse environment, where the variance in 
rewards is larger, ETC’s performance deteriorates with a high regret, whereas both UCB and AO-UCB 
show improvements. TS adapts well to the sparse environment, but MOSS again demonstrates superior 
performance with the lowest cumulative regret of 1292.30. These results underscore the consistent 
effectiveness of MOSS across varying environments, highlighting its adaptability and robustness in 
comparison to other algorithms. 

4.1.  Time comparison 
Besides the regret, a timer is set for each algorithm to compare their running time. The running time in 
seconds represents the average time to run one experiment for each algorithm in ten experiments with 
different environments, as shown in Table 2 below. 

Table 2. Average running time of five algorithms on different environments. 

algorithm 
environment ETC UCB AO-UCB TS MOSS 

dense 6.13 6.56 6.71 10.39 6.59 
sparse 6.19 6.73 6.96 10.98 6.76 
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Table 2 indicates that the MOSS algorithm has a similar running time to UCB, both in dense and 

sparse environments, with MOSS slightly slower by only 0.03 units in the dense and 0.03 units in the 
sparse environment. However, MOSS is significantly faster than TS, which takes around 10.39 and 
10.98 units of time in dense and sparse environments, respectively. This suggests that the MOSS 
algorithm is more time-efficient while still maintaining strong performance across different 
environments, making it a practical choice when both efficiency and effectiveness are critical. 

5.  Result analysis 
MOSS adjusts the exploration-exploitation balance using an upper confidence bound that is more 
conservative compared to classical UCB. The upper confidence bound for each arm i at time t in MOSS 
is defined as: 

𝑀𝑂𝑆𝑆+(𝑡) = �̂�+(𝑡) + G
-/0R #

$"(&)
S

O"(*)
                                                       (4) 

Here the function has �̂�+(𝑡) denoted the empirical mean reward of arm i up to time t. T is the total 
number of plays, and 𝐾+(𝑡) denoted is the number of times arm i has been played up to time t. 

In the initial stages, all arms have been played a few times, making 𝐾+(𝑡)  relatively small. 

Consequently, the term 
-/0	( #

$"(&)
)

O"(*)
 is large, resulting in a significant exploration bonus. This drives the 

algorithm to explore each arm more thoroughly, ensuring no potentially optimal arm is overlooked early 

on. As 𝐾+(𝑡) increases with ongoing plays, the exploration term  G
-/0	( #

$"(&)
)

O"(*)
 gradually decreases. This 

reduces the emphasis on exploration directly proportional to the increase in confidence regarding the 
empirical mean estimates �̂�+(𝑡), as the transition observed in the cumulative regret graph reflects this 
decrease in exploration intensity. Then MOSS begins exploiting arms that offer higher rewards more 
frequently, leading to a slowing rate of increase in cumulative regret in the later part. Further, the feature 
of logarithmic scaling of the exploration term in MOSS ensures that even as time progresses, the 
algorithm maintains a non-trivial degree of exploration. This is particularly effective in environments 
where the variance of rewards is not drastic. Hence, MOSS continues to fine-tune its estimates and 
occasionally explores less-chosen arms, safeguarding against premature convergence to suboptimal 
choices. 

The logarithmic factor in the exploration term of MOSS ensures that the exploration is not only tied 
to the absolute number of times an arm has been played but also to the ratio of total rounds to individual 
arm plays. This unique approach helps in balancing exploration and exploitation more effectively over 
a long horizon compared to other algorithms that might either explore too much or too little. MOSS is 
designed to minimize the worst-case regret, making it robust in environments with uncertain or dynamic 
reward distributions, as it avoids overly rapid convergence on potentially misleading early results. The 
performance of the MOSS algorithm that was observed in the cumulative regret values above for both 
dense and sparse environments reflects its strategic design to minimize worst-case regret over a long 
horizon.  

If we look again at Figure 3 and Figure 4, in dense environments where the variance of each arm’s 
reward is small, MOSS initially incurs a higher regret as it strives to equally explore all arms to ensure 
robustness against worst-case scenarios. This feature causes MOSS to perform slightly worse at the 
beginning but improves significantly as the trials continue, allowing it to gather sufficient information 
to make more informed decisions, ultimately leading to lower cumulative regret compared to algorithms 
that might favor early exploitation, such as the ETC or UCB. While in sparse environments, the larger 
variance of arm’s reward allows MOSS to complete its exploration phase more quickly and transition 
sooner to exploiting the best-performing arm. This results in more efficient performance and a markedly 
reduced cumulative regret, as evidenced by its comparative results. Thus, MOSS’s methodological 
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balance between exploration and exploitation tailored to the number of available arms and the length of 
play significantly impacts its performance, making it a robust choice in scenarios where a careful 
exploration is crucial. 

6.  Conclusion 
Based on the experiments conducted, the advantages of the MOSS algorithm can be summarized as 
follows: First, the regret of the MOSS algorithm is logarithmic in theory and smaller than UCB with the 
same parameter l in general, and it is even better than TS when the number of trails is large enough; 
Second, the MOSS algorithm is more adaptive to different environments than all other algorithms talks 
above; Third, the MOSS algorithm has a similar running time to UCB, which is much faster than TS. 

Further, MOSS is particularly well-suited for dynamic environments where decisions must be made 
under uncertainty, such as personalized recommendation systems, clinical trials, real-time bidding in 
advertising, and autonomous systems in robotics. For instance, in e-commerce, MOSS could 
dynamically adjust to evolving consumer preferences to optimize product recommendations, enhancing 
user engagement and sales. In medical settings, it could streamline the allocation of treatments in clinical 
trials to quickly identify the most effective therapies, thereby improving patient outcomes. Future 
research could focus on adapting MOSS to handle non-stationary reward distributions and complex 
reward structures, potentially integrating machine learning techniques to predict optimal exploration 
phases, thereby broadening its utility across more complex scenarios. 

Some limitations of the MOSS algorithm include that when the number of trials is small, its 
performance may be less favorable than that of TS. This is reasonable. Initially, TS employing a 
probability matching strategy, aggressively explores the action space through its Bayesian updating 
mechanism, which can lead to early identification of optimal arms. Conversely, MOSS starts with less 
aggressive exploration, focusing on minimizing worst-case regret through deterministic confidence 
intervals that tighten with more data, leading to potentially higher initial regret. Over time, MOSS's 
methodical exploration based on actual arm performance reduces exploration of suboptimal choices, 
concentrating on exploiting the best-performing arms. This strategy, aimed at robustly minimizing regret 
in the long run, becomes increasingly effective over a larger number of rounds, enabling MOSS to 
surpass TS in cumulative performance, particularly in environments where many interactions are 
expected and robust performance is critical. 
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