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Abstract. This study focuses on Markov Decision Processes (MDPs) as a framework for 

decision-making in robotics. MDPs are crucial for enabling autonomous systems to operate in 

dynamic environments. MDPs enable the development of optimal strategies that balance 

immediate and future rewards, making them essential for intelligent robotic behavior. The 

purpose of this study is to evaluate the performance differences of value iteration and strategy 

iteration algorithms in different robot tasks. The study highlights the strengths and weaknesses 

of each algorithm. This comparative analysis uniquely addresses a gap in existing research by 

evaluating both Value Iteration and Policy Iteration side by side, offering critical insights into 

their respective performances across diverse robotic tasks. Results indicate that Policy Iteration 

converges faster and adapts better in complex environments, making it ideal for real-time 

applications, while Value Iteration is more efficient in smaller state spaces.These findings 

provide critical insights for selecting algorithms tailored to specific robotic applications, 

highlighting their role in advancing intelligent robotic systems. 
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1.  Introduction 

Markov Decision Processes (MDPs) serve as a fundamental framework in decision-making under 

uncertainty, particularly in robotics. The importance of MDPs lies in their ability to model complex 
environments and generate optimal policies, allowing robots to make informed decisions autonomously. 

As robotics continues to evolve, the selection of appropriate decision-making algorithms has become 

crucial for achieving intelligence and autonomy. MDPs, through algorithms such as Value Iteration and 
Policy Iteration, provide the necessary tools to address these challenges. Although significant 

advancements have been made in reinforcement learning and autonomous systems, most existing 

research primarily focuses on single algorithms, lacking comparative analysis between Value Iteration 

and Policy Iteration, which limits a comprehensive understanding of algorithm performance across 
different applications. Puterman provided a comprehensive exploration of MDPs focusing on discrete 

stochastic dynamic programming[1]. Leslie Pack Kaelbling and Tomás Lozano-Pérez talked about 

integrated task and motion planning in belief space, which helps robots make decisions in the face of 
uncertainty[2]. Richard S. Sutton introduced reinforcement learning principles and algorithms, 

emphasizing their applications in AI and robotics[3]. Two reserachers provided basic theories and 

techniques in order to explore policy iteration methods for reinforcement learning in continuous time 
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and space[4]. In 2024, a group of researchers used integrated reinforcement learning to provide a value 

iteration-based adaptive fuzzy backstepping optimal control for modular robot manipulators[5]. Three 

researchers introduced a theory of regularized MDPs, providing a theoretical framework for their 
application[6]. Dimitri Bertsekas wrote a book that covers the intersection of reinforcement learning and 

optimal control, focusing on the development of advanced algorithms for decision-making[7]. Mikko 

Lauri, David Hsu, and Joni Pajarinen did a survey that reviews the application of Partially Observable 
MDPs (POMDPs) in robotics, highlighting recent advancements and challenges[8]. Dimitri Bertsekas 

wrote a book in 2022 that includes abstract dynamic programming, expanding on the theoretical 

underpinnings of decision-making processes[9]. A group of researchers introduced the development of 

an AI that mastered the game of Go using deep neural networks and tree search[10]. A paper in 2016 
introduced a deep reinforcement learning approach that achieved human-level control in various Atari 

games[11]. Deep reinforcement learning methods for motion planning and control in autonomous cars 

were examined in a survey, which included current developments and difficulties[12]. The existing 
research primarily focuses on either Value Iteration or Policy Iteration in isolation, but leave a gap in 

understanding the comparison between these algorithms in various robotic applications. This study 

compares the performance of Value Iteration and Policy Iteration algorithms in various robotic tasks, 
addressing this gap and providing a theoretical basis for selecting the appropriate algorithm. This paper 

will first introduce the fundamental principles of MDPs, then analyze the strengths and weaknesses of 

both algorithms, and finally present specific application examples to demonstrate their practical 

performance in robotic decision-making. 

2.  Background on MDP 

Components of MDP: states(S), actions(A), transition probabilities(P), rewards(R), and discount 

factor(γ)[1]. 
States: A finite set that contains the various circumstances or configurations in the environment. 

These can include the robot’s position, orientation, speed, and sensor readings, as well as the status of 

external factors such as obstacles or other agents in the environment. For example, in robotic navigation, 

states might represent the robot’s location on a map grid. 
Actions: A finite set of actions that are available to the decision-maker in every state. These actions 

could include moving forward, turning, or grasping an object. Each action taken in a state leads to a new 

state, depending on the dynamics of the environment and the robot's capabilities. For a mobile robot, 
actions might involve moving in different directions (e.g., forward, backward, left, right) or changing 

speed. 

Transition probabilities: The probability of changing states after executing a particular action. This 

can be written as 𝑝( 𝑠′ ∣ 𝑠, 𝑎 ), where s represents the current state, a is the action that was made, and s′ 

denotes the resulting state. In robotics, transition probabilities are crucial for modeling uncertainty. 

Accurately modeling these probabilities allows the robot to make more reliable decisions by anticipating 

various possible outcomes and planning accordingly, thereby increasing its robustness in unpredictable 
environments. 

Rewards: a function that determines the immediate gain or loss from doing an action in a specific 

state and assigns a numerical reward for each state-action pair or state. In robotic path planning, the 
reward might be high for reaching a target location and low (or negative) for hitting obstacles. 

Discount factor: A number ranging from 0 to 1 used to discount future rewards, reflecting a 

preference for immediate rewards over those in the future. In long-term tasks such as navigation, a higher 
discount factor might be used to ensure the robot considers the long-term effects of its actions, such as 

designing a route that avoids obstacles far ahead. In contrast, in tasks requiring quick, short-term 

decisions, such as reactive obstacle avoidance, a lower discount factor might be preferred to prioritize 

immediate safety over distant goals. 
The theoretical basis of MDP includes Markov properties, Bellman equations and dynamic 

programming, which not only provide a solid mathematical foundation for MDP, but also ensure the 

transparency and interpretability of the decision process. The Markov property is a stochastic process's 
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memoryless nature, which means that its future state is decided solely on its current state and not on the 

sequence of events that came before it. Bellman equations provide a recursive decomposition of the 

value of a decision problem, breaking it down into simpler subproblems. Dynamic programming is an 
optimisation technique that breaks down large problems into simpler subproblems in order to solve them. 

They ensure that decision processes are both efficient and interpretable, making them invaluable in fields 

like robotics, where clear, optimal decision-making is essential. This solid theoretical basis allows for 
the development of algorithms that are both practically useful in challenging real-world situations and 

mathematically sound. 

Applications of MDPs in robotics: Robotic applications include navigation, tracking, autonomous 

driving, multi-robot systems, manipulation, and search and rescue all make extensive use of MDP. For 
example, in robot navigation, MDP can help the robot decide what actions to take at evey time step to 

maximize the probability of reaching the target location or minimize the time[8].  

Challenges in robotics: High-dimensional state spaces and real-time constraints are two challenges 
in these tasks, and MDPs are particularly useful to ensure robots can operate efficiently and safely[2]. 

High-dimensional state spaces arise when a robot must consider a large number of variables to make 

decisions, such as the position, velocity, and orientation of each joint in a robotic arm, or the 
environment's layout in autonomous navigation. To solve this problem, MDP simplifies decision-

making to only current state according to the Markov property. Real-time constraints requires robots to 

make decision within short time. By using effitient algorithms that prioritize faster convergence, MDP 

can meet the real-time constriants. 

3.  Policy Iteration 

3.1.  Algorithm overview 

There are two steps for Policy iteration, which are policy evaluation and policy improvement 
respectively. Policy evaluation is a process to find a given policy’s value function. It calculates each 

state's expected return under the specified policy. The policy evaluation formula is: 

 

vπ(s) = Eπ[ Rt+1 + γRt+2 + γ2Rt+3 + ⋯ ∣∣ St = s ] = Eπ[ Rt+1 + γvπ(St+1) ∣∣ St = s ]  

= ∑ π( a ∣ s ) ∑ p( s′, r ∣ s, a )[r + γvπ(s′)]

s′ ,ra

(1) 

Where 𝑣𝜋(𝑠) is the expected return from state s and under policy 𝜋. It can be iterated using the 

formula: 

As k approaches infinity, the value function converges to a true value function.  
 

vk+1(s) = Eπ[ Rt+1 + γvk(St+1) ∣∣ St = s ] = ∑ π(a|s) ∑ p(s′, r|s, a)[r + γvk(s′)]s′,ra (2) 

 

Policy improvement is to find a better policy under the current policy from state s, that is 𝑣𝜋(𝑠). 

Selecting an action a in state s and following the existing policy 𝜋, then follow the formula: 

𝑞𝜋(𝑠, 𝑎) =  𝐸𝜋[𝑅𝑡+1  + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]= ∑ p(s',r|s,a)[r+γvπ(𝑠′)]
S',r

(3) 

If it is higher, choosing a each time s is encountered will be preferable, and the new policy will be 
superior. That is a special scenario of the policy improvement theorem, a generic result. Suppose there 

are two policies 𝜋 and 𝜋’ such that, for all s ∈ S, if: 𝑞𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑣𝜋(𝑠). In that case, the policy 

𝜋′ will be at least as good as, 𝜋. In other words, it must get a higher or equivalent expected return from 

every state in S. It follows naturally to take into account modifications at all states and to all feasible 

courses of action, choosing the action that seems most appropriate at each state based on 𝑞𝜋(𝑠, 𝑎). 
Consider the new policy, which is called the greedy policy: 
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π'(s) =  argmax
𝑎

qπ(s, a) 

     = argmax
a

E[Rt+1 +γvπ(St+1)| St=s, At=a] 

= argmax
a

∑ p(s',r|s,a)[r+γvπ(s′)]
S', r

(4) 

The greedy policy is at laest as good as the original policy. 

After using 𝑣𝜋 to enhance policy 𝜋 and produce a superior policy 𝜋′,we can proceed to compute 

𝑣𝜋′  and refine it once more to produce an even superior 𝜋′′. As a result, we can produce a series of 

policies and value functions that improve monotonically[3]. 
The full procedure for policy iteration is shown on Figure 1. 

 

Figure 1. Flow chart for Policy Iteration 

3.2.  Example application in robotics 

One example of policy iteration in robotics is to use it in continuous time and space (CTS) systems. 

More techniques can be extended by policy iteration, including differential PI (DPI) and Improved PI 
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(IPI), which are applicable to real-time, continuous systems like those found in robotics, demonstrating 

their effectiveness through simulations[4]. 

3.3.  Advantages of policy iteration 
It usually converges faster than value iteration, especially when only a small number of iterations is 

required. This makes it more suitable for tasks with larger state spaces or where faster convergence is 

necessary, such as autonomous driving or high-dimensional manipulation. 

3.4.  Disadvantage of policy iteration 

Policy evaluation is involved in each iteration, and this step can be computationally demanding, which 

is not suitable for time-sensitive robotic applications. Another disadvantage is that there is a risk of 

policy iteration converging to suboptimal policies if the policy evaluation stage is not carried out 
accurately[6]. 

4.  Value Iteration 

Value iteration is an algorithm that finds the best course of action by iteratively updating each state's 
value until convergence in reinforcement learning. It does so by computing each state’s largest expected 

utility of future rewards, helping to determine the best action to take from each state to maximize long-

term rewards. 

4.1.  Algorithm Overview 

Value iteration is derived from policy iteration. To be specific, there are multiple approaches to shorten 

the policy evaluation phase of policy iteration without sacrificing policy iteration's convergence 

guarantees. Value iteration is an algorithm that the policy evaluation stops after just one steep. It can be 
expressed as a mixture of abbreviated policy evaluation and policy improvement[3]: 

𝑣𝑘+1(𝑠) = max
a

𝐸[ 𝑅𝑡+1 + γ𝑣𝑘(𝑆𝑡+1) ∣∣ 𝑆𝑡 = 𝑠,  𝐴𝑡 = 𝑎 ] 

= max
a

∑ p( s′, r ∣ s, a )[r + γvk(s′)]

s′,r

(5) 

Similar to policy iteration, value iteration terminates when it takes an unlimited number of iterations 

to converge precisely to 𝑣∗. In practice, we cease when the value function only slightly shifts in a 
sweep[3]. 

4.2.  Example application in robotics 

Value Iteration is central to optimizing the control policy for modular robot manipulators. It works with 

adaptive fuzzy systems and reinforcement learning to provide a robust and adaptive control strategy that 
can handle the complexities of robotic manipulation tasks[5]. 

4.3.  Advantages of value iteration 

It requires less memory compared to policy iteration because it focuses on updating the value function 
directly rather than storing and evaluating entire policies[6]. Additionally, value iteration is simple and 

easy for implementation. It is particularly effective in problems with small to medium state spaces. 

4.4.  Disadvantage of value iteration 
In big state spaces, in particular, it can be computationally expensive. The need to iterate over all states 

and actions multiple times until convergence may be demanding[7]. 
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5.  Comparison Analysis 

5.1.  Comparative Performance of Policy Iteration and Value Iteration 

5.1.1.  Speed of convergence of various robotic tasks 

Policy iteration is known for its rapid convergence, especially in problems where the initial policy is 

close to optimal. The algorithm changes between evaluating a policy and improving it, which generally 

leads to faster convergence compared to Value Iteration, particularly when dealing with large state 
spaces[9]. In robotic tasks, this means that Policy Iteration can quickly refine control policies, making 

it suitable for applications where quick adaptation is critical, such as dynamic path planning and obstacle 

avoidance. Value Iteration, on the other hand, can be slower to converge, especially in environments 

with large or continuous state spaces. The algorithm iterates over all possible actions and states, updating 
the value function until it stabilizes, which can be computationally intensive[3]. This slow convergence 

can be a disadvantage in time-sensitive robotic tasks, where quick policy updates are necessary to 

respond to changing environments, such as in real-time robotic manipulation tasks. 
Example: In a study comparing the two algorithms in robotic navigation tasks, it was observed that 

Policy Iteration outperformed Value Iteration in terms of convergence speed, particularly in 

environments with complex state spaces[10]. However, in simpler tasks, such as grid-based path 
planning, the difference in convergence speed was less obvious, with Value Iteration providing a 

competitive alternative due to its straightforward implementation[11]. 

5.1.2.  Impact on real-time decision-making in robotics  

The faster convergence of Policy Iteration is generally regarded as better real-time performance in 
robotics, as it allows for the development of policies that can adjust quickly to new information and 

changing environments. This is particularly useful in tasks that require continuous and dynamic updates, 

such as autonomous navigation and human-robot interaction. Recent studies have shown that Policy 
Iteration can effectively handle complex state spaces in real-time scenarios, offering robust performance 

in dynamic environments[12]. Additionally, the ability to handle larger state spaces more efficiently 

makes Policy Iteration a better choice for complex decision-making tasks in robotics.Value Iteration is 

less commonly used in real-time applications due to its slower convergence. But in some scenarios 
where decision-making processes can be precomputed or where real-time updates are not as critical, 

Value Iteration can still be considered to be used. 

Example: In scenarios where a robotic arm had to adjust its movements rapidly in response to 
unpredictable obstacles or changes in task requirements, Policy Iteration consistently outperformed 

Value Iteration. This superior performance was attributed to Policy Iteration's ability to converge more 

quickly to an optimal policy, enabling the robotic system to make more timely decisions[12]. 

5.2.  Applicability of Value Iteration and Policy Iteration in Various Robotic Tasks 

5.2.1.  Types of tasks where each algorithm excels 

Policy Iteration is more suitable for larger state spaces where it may not be possible to compute the value 

function directly for every state. It is beneficial in environments where the agent can improve its policy 
incrementally through policy evaluation and policy improvement steps. This method is advantageous 

when the agent can leverage the current policy to guide the improvement process, making it more 

effective in complex tasks with high-dimensional state spaces. Value Iteration tends to excel in tasks 
where the environment's dynamics are well-understood, and in small state space. It works especially 

well in situations when the agent can quickly calculate the greatest expected utility for all possible 

Proceedings of  CONF-MLA 2024 Workshop:  Semantic  Communication Based Complexity Scalable Image Transmission System for
Resource Constrained Devices 

DOI:  10.54254/2755-2721/83/2024GLG0073 

145 



 

 

actions efficiently. Value iteration is also simpler in terms of implementation and is known for its 

computational efficiency when dealing with smaller state spaces. 

Example: In scenarios where a robot must navigate through a constantly changing environment, such 
as a warehouse with moving obstacles or an outdoor setting with varying terrain, Policy Iteration is 

highly effective. Its ability to update policies rapidly allows the robot to adjust its path in real-time, 

ensuring safe and efficient navigation[12]. 

5.2.2.  Considerations for making choice between Value Iteration and Policy Iteration 

The following need to be considered when deciding which to choose between two algorithms, namely 

Value Iteration or Policy Iteration: 

State Space Size: For smaller, discrete state spaces, value iteration might be more efficient. For larger 
or continuous state spaces, policy iteration could be more appropriate. 

Convergence Speed: Compared to value iteration, policy iteration may converge to an optimal policy 

more quickly because it directly improves the policy through evaluation and improvement steps. 
Computational Resources: Value iteration might be preferred when computational resources are 

limited due to its typically simpler implementation. However, policy iteration could be chosen if more 

complex computations are feasible. 
Policy Evaluation: If the environment allows for efficient policy evaluation, policy iteration could 

be advantageous as it includes this step in its process. 

Real-time Decision-Making: In scenarios requiring real-time decisions, the potentially faster 

convergence of policy iteration might be preferred. 
Model Knowledge: A model of the environment is necessary for both algorithms. In the event that a 

precise model is accessible, both algorithms could be utilised efficiently. 

The differences between Policy Iteration and Value Iteration is listed in Table 1. 

Table 1. Comparison of Policy Iteration and Value Iteration 

 Policy Iteration Value iteration 

Algorithm Type 

Alternates between policy 

evaluation and policy 

improvement until the policy 
stabilizes 

Iterative process that updates 
the value of each state until 

convergence. 

Convergence Speed 

Typically faster, especially 

when the initial policy is close 

to optimal. 

Generally slower, especially in 

large state spaces. 

Memory Usage 

Requires more memory due to 

storing and evaluating entire 

policies. 

Requires less memory as it 
only stores the value function. 

Complexity 
More complex, particularly 
suited for high-dimensional or 

larger state spaces. 

Simpler to implement, more 
straightforward in small to 

medium-sized state spaces. 

Application Suitability 
Better suited for complex, 
dynamic environments 

requiring fast adaptation. 

Effective in smaller or well-
understood environments 

where state space is limited. 

Real-Time Decision-Making 

Better for real-time 

applications due to quicker 
convergence and adaptability. 

Less suited for real-time 

applications due to slower 
convergence. 

6.  Conclusion 

In conclusion, both Value Iteration and Policy Iteration are critical algorithms for solving MDPs, 

particularly in the domain of robotics. Policy Iteration typically converges faster, making it suitable for 
complex dynamic environments that require real-time decision-making. In contrast, Value Iteration has 
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a simpler implementation and lower memory requirements, making it more effective in scenarios with 

smaller or well-understood state spaces. The choice between these algorithms should consider factors 

such as state space size, the need for real-time decisions, and available computational resources. 
Ultimately, both algorithms play a significant role in advancing intelligent robotic systems capable of 

autonomous operation in uncertain environments. Although these two algorithms are effective in solving 

MDPs, they still have limitations in large state spaces and real-time constraints that require further 
research. The future of robotics will likely witness continued innovations in MDP algorithms, focusing 

on enhancing scalability, efficiency, and adaptability. These advancements are expected to drive further 

progress in autonomous systems, enabling more intelligent, responsive, and robust robotic behavior in 

increasingly complex and dynamic environments. This research establishes a foundational basis for 
future investigations into hybrid methods or adaptive algorithms that integrate the strengths of both 

approaches. Such innovations have the potential to significantly enhance the scalability of algorithms, 

thereby facilitating their application in more complex, uncertain, and real-time robotic tasks. Ultimately, 
this advancement will broaden their applicability across a wider array of autonomous systems. 
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