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Abstract. This article explores the role and advantages and disadvantages of visual and radar 

data fusion in intelligent driving systems. With the rapid development of intelligent driving 

technology, the comprehensive perception of the environment by car perception systems has 
become crucial, usually requiring the combination of low, medium, and high-precision sensors. 

Visual sensors perform excellently in acquiring high-resolution images and recognizing detailed 

information, while radar sensors have higher stability and penetration in harsh weather 

conditions. Due to the limitations of a single sensor in complex driving environments, data fusion 

has become a key strategy for improving the performance of perception systems. By comparing 

different perception schemes and application scenarios, this article analyzes the actual effects 

and potential advantages of visual and radar data fusion, revealing its important role in intelligent 

driving technology. Fusion technology can compensate for the shortcomings of various sensors, 

and improve the accuracy and reliability of environmental perception, but still faces challenges 

in data synchronization, algorithm selection, and real-time performance. This article aims to 

provide valuable insights for the development of future intelligent driving technology. 
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1.  Introduction 

The rapid development of intelligent driving technology is driving changes in the automotive industry, 

among which the core role of perception systems cannot be ignored. In order to achieve comprehensive 

environmental perception, autonomous vehicles usually rely on multiple sensors, classified into low-, 
medium-, and high-fidelity sensors [1]. These sensors each have their own unique advantages and 

limitations. Visual sensors excel in providing high-resolution images and are suitable for identifying 

detailed information such as traffic signs, lane lines and pedestrians; while radar sensors show higher 
stability and penetration in adverse weather conditions, and have irreplaceable advantages in detecting 

distance and speed. 

However, the performance of a single sensor in a complex driving environment is often limited. 
Therefore, the fusion of visual and radar data has become an important strategy to improve the 

performance of perception systems. Most autonomous driving systems apply sensor fusion [2]. Data 

fusion technology can make up for the shortcomings of each sensor by processing the information of 

different sensors in a comprehensive manner, and achieve a more comprehensive and accurate 
understanding of the environment. Despite this, there are still many controversies and challenges in this 
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field, such as the synchronization of sensor data, the selection of fusion algorithms, and the real-time 

performance of the system. 

This study aims to explore the role of visual and radar data fusion in intelligent driving systems and 
analyze whether they are complementary or alternative. By comparing different perception schemes and 

analyzing specific application scenarios, we hope to reveal the actual effects and potential advantages 

of various sensor fusions and provide valuable insights for the development of future intelligent driving 
technology. 

2.  Different perception systems in intelligent driving 

2.1.  LiDAR 

This system consists of a LiDAR, a camera, and a radar. The LiDAR provides high-precision distance 
measurement and 3D environmental images, the camera captures detailed visual information such as 

traffic signs, lane markings, and pedestrians, and the radar detects the speed and position of objects. The 

characteristics of Plan A include high-precision 3D environment perception and rich visual information, 
improving the detection ability of dynamic objects through multimodal fusion. Its main advantages lie 

in accurate environmental recognition and excellent performance in nighttime and low-light 

environments, but there are also issues of high cost and complex data processing requirements.  

2.2.  Millimeter wave radar 

This system relies on millimeter wave radar and cameras, possibly supplemented by ultrasonic sensors. 

Millimeter wave radar provides accurate speed measurement and distance perception that is not affected 

by light, while cameras provide environmental images to assist in identifying traffic signs and lane 
information. The characteristic of this scheme lies in the stability of the radar and its adaptability to 

harsh weather conditions, while the camera supplements visual information [3]. Its advantages lie in its 

high cost-effectiveness and strong environmental adaptability, but due to the low resolution of 
millimeter wave radar, it may not be able to accurately recognize small objects, and the effectiveness of 

image recognition depends on the image processing capability of the camera. 

2.3.  Ultrasonic sensors 

This system mainly includes cameras and ultrasonic sensors, which may be supplemented with a small 
amount of radar. The camera provides the main visual information and performs environment 

recognition through deep learning algorithms, while ultrasonic sensors are used for close-range obstacle 

detection, such as parking assistance systems. The characteristic of this solution is to rely on low-cost 
cameras and ultrasonic sensors, but it lacks accuracy and environmental adaptability. Its advantages lie 

in lower hardware costs and advances in image processing technology, but it performs poorly in light 

changes and harsh weather conditions, with lower resolution and measurement accuracy. 

2.4.  Comparison 

A comparison of schemes shows that LiDAR performs the best in accuracy, but due to high costs and 

complex data processing requirements, it may not be suitable for all application scenarios. The 

millimeter wave radar has significant advantages in cost-effectiveness and stability and is suitable for 
various environments, but its resolution and image recognition capabilities are limited. The ultrasonic 

sensors have the lowest cost and are suitable for applications with limited budgets, but it has significant 

shortcomings in environmental adaptability and accuracy. After comprehensive consideration, the 
advantages and disadvantages of each solution should be reasonably balanced according to specific 

application scenarios and requirements to achieve the best performance of the intelligent driving system. 

3.  Different sensors in intelligent driving 

The selection of various sensors is crucial in intelligent driving systems, as each sensor plays a unique 

role in environmental perception and has its own specific advantages and disadvantages. Monocular 
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cameras are one of the most common visual sensors that capture two-dimensional images of the 

environment through a lens and image sensor. It has low cost, compact design, and easy integration, but 

is highly sensitive to environmental conditions such as lighting and weather changes, and has limitations 
in depth perception, requiring algorithm supplementation [4]. The binocular camera system uses two 

cameras to simulate human eyes and provides accurate three-dimensional depth information through 

disparity calculation. This system can achieve strong depth perception and stereoscopic vision, 
improving the accuracy of object detection and scene understanding. However, binocular cameras are 

expensive and require processing complex image data to calculate depth information. Conventional 

radar sensors such as millimeter wave radar measure the distance and velocity of objects by emitting 

electromagnetic waves and receiving their reflected waves. After radar radiates electromagnetic waves, 
it gathers the scattered waves of the target through the receiving antenna, and then performs a series of 

signal processing to obtain target information [5]. Radar sensors are not affected by lighting and weather 

conditions and can operate stably in various environments. However, their resolution is low, making it 
difficult to detect small objects or details of the environment, and may be subject to interference from 

other radar systems. Lidar generates a three-dimensional environmental map by exciting a laser beam 

and measuring reflection time, providing extremely high accuracy and detailed point cloud data. This 
makes LiDAR excellent in environmental modeling and obstacle detection, but its equipment cost is 

expensive and requires a powerful computing platform to process large amounts of data. To sum up, the 

application of these sensors in intelligent driving has its own advantages and challenges. Reasonable 

selection and combination of different sensors can significantly improve the perception ability and 
overall performance of the auto drive system. 

4.  Complex scene analysis in intelligent driving 

It’s of vital importance to analyze complex situations to ensure the safety of automatic driving systems. 
Here are 2 scenarios which should be attached the most importance to due to their commonality. 

4.1.  The complex traffic environment at urban intersections 

In this scenario, the intelligent driving system must handle a large amount of traffic information, 

including oncoming vehicles, pedestrians, bicycles, as well as various traffic signs and signals. The 
characteristics of urban intersections are high-density traffic flow and complex intersection paths, which 

require the system to have high-level real-time perception and decision-making capabilities. The main 

difficulties include how to accurately identify and predict the behavior of traffic participants from 
different directions, especially in busy intersections where the state of traffic flow, pedestrian flow, and 

signal lights changes rapidly and various unexpected situations often occur. This requires the system to 

not only have strong data fusion capabilities but also to have fast response and processing capabilities. 

4.2.  Lane changes and overtaking operations on highways  

The characteristic of highway scenarios is that vehicles travel at high speeds, and lane markings are 

usually clear, but complex lane changes and overtaking requirements pose different challenges to the 

system. The difficulty lies in how to accurately evaluate the speed and position of surrounding vehicles 
at high speeds, as well as how to safely perform overtaking operations when making lane changes. This 

requires intelligent driving systems to have extremely high detection accuracy and decision-making 

speed to ensure that they can quickly and accurately handle tasks such as lane changes, distance 
adjustments, and obstacle avoidance during high-speed driving. At the same time, driver expectations 

and compliance with traffic regulations need to be considered to ensure the safety and reliability of the 

system. 

5.  Optimization of intelligent driving perception solution 

In intelligent driving systems, optimizing the perception scheme is the key to achieving safe and efficient 

autonomous driving. Perception systems rely on various sensors and algorithms to perceive the 

environment, identify obstacles, predict the behavior of traffic participants, and make decisions and 
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controls. In order to improve the performance of intelligent driving systems, comprehensive 

optimization must be carried out from the aspects of fusion technology, machine learning, large models, 

sensor hardware progress, and computing power. 

5.1.  Fusion 

The theoretical basis of vision and radar data fusion lies in the comprehensive utilization of the 

advantages of different sensors to make up for the shortcomings of a single sensor. Visual sensors (such 
as cameras) can capture high-resolution two-dimensional images, providing rich color and texture 

information that is crucial for identifying traffic signs, lane markings, pedestrians, and more. However, 

the main limitation of visual data is that it is highly sensitive to lighting conditions and weather changes, 

such as at night or in adverse weather conditions, where camera performance may significantly degrade. 
Radar sensors (such as millimeter wave radar) measure the distance and velocity of objects by emitting 

electromagnetic waves and receiving their reflected signals. The main advantage of radar lies in its 

strong environmental adaptability, which enables stable operation under various lighting and weather 
conditions. However, the resolution of radar is low, making it difficult to provide detailed environmental 

information, especially in identifying small objects or environmental details. 

The theoretical basis for integrating visual and radar data lies in utilizing the stability of radar and 
the high resolution of vision, and combining the advantages of both through data fusion algorithms to 

improve the accuracy and reliability of overall environmental perception. This fusion usually combines 

data from different sensors into a comprehensive environment model through algorithms to help the 

system better identify and predict various elements in the environment. 

5.1.1.  Specific fusion algorithm. Specific fusion algorithms include data-level fusion, feature-level 

fusion, and decision-level fusion. Data level fusion refers to the direct combination of raw data from 

different sensors. Common algorithms include Kalman filter and particle filter. Kalman filter is a 
recursive algorithm that estimates the state of a target by weighted averaging sensor data, suitable for 

handling noisy data in linear systems [6]. Particle filtering is suitable for systems with nonlinear and 

non-Gaussian noise, and approximates the state distribution of the target by generating a large number 

of particle samples. Feature level fusion is the process of fusing extracted features from sensor data after 
initial processing. For example, by extracting edge features of objects through visual sensors and 

combining them with distance information provided by radar sensors, more accurate target recognition 

and tracking can be achieved. Common algorithms include support vector machines (SVM) and fusion 
networks in deep learning, which can process data in high-dimensional feature spaces and improve the 

accuracy of object detection. Decision-level fusion is the fusion of the judgment results made by each 

sensor separately. Common methods include weighted voting and confidence fusion, which combine 
the judgment results of various sensors to make the final decision. For example, in pedestrian detection, 

visual sensors may recognize multiple potential pedestrians, while radar sensors provide distance 

information for these targets. Through decision level fusion, the accuracy and reliability of the final 

recognition can be improved. 

5.1.2.  Implementation results and challenges. The implementation effect of fusion technology 

significantly improves the environmental perception ability of intelligent driving systems. By 

integrating vision and radar, the system can maintain high detection accuracy under various lighting and 
weather conditions, improving the reliability of target recognition and scene understanding. However, 

achieving these effects faces some challenges. 

Firstly, the data acquisition frequency and format of different sensors may be different. How to 
accurately synchronize them together is an important issue. This requires efficient time synchronization 

mechanisms and data preprocessing algorithms to ensure the accuracy of the fused data. 

Although data fusion algorithms can significantly improve system performance, their computational 

complexity is high, requiring powerful computing resources to process real-time data. 
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The errors and noise of the sensor itself may also affect the fusion effect, so it is necessary to design 

effective filtering and denoising algorithms to improve the quality of the fused data. 

5.2.  Machine learning / large models 

5.2.1.  Application of machine learning in data fusion. The application of machine learning in data 

fusion is mainly reflected in automatically learning and extracting important features from data through 

algorithms, thereby improving the perception ability of the system. Traditional data fusion methods rely 
on rules and models, while machine learning can automatically discover patterns and patterns in data by 

training on large amounts of historical data. For example, a model called “FIERY” enables the camera 

to get rid of GPS and predict safe directions only by modeling the inherent randomness of the future 

from camera driving data [7]. Statistics have shown that their model outperforms previous prediction 
baselines on the NuScenes and Lyft datasets. 

5.2.2.  The role of deep learning models. The role of deep learning models in intelligent driving 

perception systems is particularly prominent. Deep learning, especially convolutional neural networks 
(CNNs), performs well in processing image data. By training deep neural networks, the system can 

automatically learn complex feature representations from a large amount of annotated data, achieving 

excellent performance in tasks such as object detection, lane recognition, and traffic sign recognition. 
For example, the YOLO (You Only Look Once) series models can detect and classify objects in images 

in real-time, and can supplement and validate radar data during processing, thereby improving overall 

recognition accuracy. 

5.2.3.  Case study on performance improvement. In practical applications, there are numerous cases of 
performance improvement for deep learning models. For example, Tesla's auto-drive system uses the 

deep convolutional network to process the data from the camera, realizing efficient pedestrian detection 

and obstacle recognition [8]. In addition, Baidu's Apollo project achieves high-precision environmental 
perception and autonomous driving decision-making by combining deep learning and sensor fusion 

technology [9]. The application of deep learning models can significantly improve the detection 

accuracy and processing speed of perception systems, but it also requires a large amount of computing 

resources and training data to support. 

5.3.  Sensors 

5.3.1.  Progress in sensor hardware. The progress of sensor hardware is an important aspect of 

optimizing intelligent driving perception solutions. In recent years, sensors such as LiDAR, millimeter 
wave radar, and cameras have significantly improved in terms of performance and cost. The resolution 

and detection range of laser radar continue to improve, and the new generation of laser radar can provide 

more detailed three-dimensional environmental data. The frequency band and detection capability of 
millimeter wave radar has also been enhanced, which can work stably under high-speed driving and 

adverse weather conditions. The image sensor technology of cameras is also constantly advancing, such 

as improving image quality by enhancing low light performance and high dynamic range. 

5.3.2.  Improved performance analysis. The improved sensor hardware can significantly enhance the 
perception capability of intelligent driving systems. High-resolution LiDAR provides more accurate 

environmental models, enhanced millimeter wave radar can maintain stable performance in high-speed 

and complex environments, and advanced camera technology improves image quality in low light and 
high-contrast scenes. These hardware advancements enable the system to more accurately perceive the 

surrounding environment, improving safety and driving experience. However, these improvements also 

bring about issues of increased costs and system integration complexity, which need to be 
comprehensively considered to achieve optimal system performance. 
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5.4.  Computing power 

5.4.1.  Calculation requirements for data processing. The data processing and computing requirements 

of intelligent driving systems are very high. The amount of data collected by sensors is enormous, 
including high-resolution images, radar point clouds, and three-dimensional point cloud data from 

LiDAR [10]. These data require real-time processing to achieve accurate object detection, obstacle 

recognition, and path planning. The computing requirements mainly include data preprocessing, feature 
extraction, fusion processing, and decision making, each step requiring powerful computing resources 

to ensure real-time response and high accuracy. 

5.4.2.  Application of hardware acceleration technology. In order to meet high computing demands, 

hardware acceleration technology is widely used in intelligent driving systems. Graphics Processing 
Units (GPUs) and Application Specific Integrated Circuits (ASICs) are the main acceleration 

technologies that can significantly improve data processing speed. GPUs are capable of processing large 

amounts of data in parallel, making them highly suitable for training and reasoning deep learning models. 
ASIC is an integrated circuit optimized for specific applications, which can provide advantages in power 

consumption and computational efficiency. For example, NVIDIA's Drive PX platform and Intel's 

Mobileye series chips have been widely used in intelligent driving systems to support efficient data 
processing and real-time decision-making. 

5.4.3.  Computing power optimization strategy. Computing power optimization strategies include 

algorithm optimization, hardware upgrades, and distributed computing. Algorithm optimization reduces 

computational complexity and resources by improving data processing and model inference algorithms.  

6.  Conclusion 

In intelligent driving systems, the fusion of visual and radar data demonstrates the complementary 

advantages of sensor technology, rather than simply replacing each other. Visual sensors and radars each 
have unique advantages: visual sensors provide high-resolution image information, suitable for 

recognizing complex environmental details and traffic signs, but their performance is greatly affected 

by lighting and weather conditions; radar sensors have stable distance measurement and speed detection 

capabilities, and can maintain stable operation even in adverse weather conditions. However, the 
resolution of radar is low, making it difficult to provide detailed environmental information. Therefore, 

it is difficult for a single sensor to meet the overall perception needs of the auto drive system in various 

environments. 
By integrating visual and radar data, intelligent driving systems can comprehensively utilize the 

advantages of both and compensate for their respective shortcomings. Specifically, the stable distance 

information provided by radar can effectively supplement the limitations of visual sensors in low light 
or complex weather conditions, while visual sensors can enhance the ability to recognize environmental 

details in radar data. This multimodal fusion technology not only improves the accuracy and reliability 

of environmental perception, but also optimizes data processing and decision-making processes. 

In addition, technology evolution and emerging technologies such as deep learning and edge 
computing further promote the development of vision and radar fusion technology. These technologies 

can improve data processing speed and accuracy, supporting more complex perception tasks. Although 

there are still challenges such as data synchronization, processing complexity, and sensor errors in the 
fusion process, the significant performance improvement and system reliability it brings make the 

complementary fusion of vision and radar the best choice in intelligent driving systems. 

In summary, the fusion of visual and radar data is not only an effective integration of their respective 
advantages, but also a step towards higher precision and safety in intelligent driving technology. The 

complementarity of sensors determines that they play a complementary role in the auto drive system, 

rather than simply replacing each other. This fusion strategy will continue to drive the development of 

intelligent driving technology, bringing a more intelligent and safe driving experience. 
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