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Abstract. This paper presents the implementation of a Gomoku AI based on the alpha-beta 

pruning search algorithm and the Negamax algorithm. Gomoku, a traditional board game known 

for its strategic depth, poses significant challenges in AI development due to the exponential 

increase in possible moves. The AI leverages the computational efficiency of Alpha-Beta 

Pruning, which enhances the Negamax algorithm by reducing the number of nodes that need to 

be evaluated in the game tree. This combination allows for faster decision-making without 

compromising accuracy. Additionally, a value evaluation function is used to assess board states 

and guide the AI in selecting optimal moves. In the results the performance of the AI was tested 

through simulations, demonstrating great performance in move selection and computational 

efficiency compared to traditional methods. The paper also explores potential improvements, 

including the integration of reinforcement learning (RL) techniques to further enhance the AI's 

adaptability and strategic decision-making capabilities. 
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1.  Introduction 

Gomoku is a traditional board game that has captured the interest of players worldwide due to its simple 
rules and deep strategic complexity. Although it is not as complex as chess and Go, Gomoku presents 
significant challenges in terms of strategic planning and move prediction. The objective is to be the first 
to align five stones of the same color in a row, either horizontally, vertically, or diagonally, on a 15x15 
board. This game has a rich history and is played in both casual and competitive settings, with various 
rule sets that add complexity, such as the "forbidden move" rules in competitive play to balance the 

advantage of the first player. 
The development of artificial intelligence (AI) for Gomoku has progressed significantly, particularly 

with the advent of advanced search algorithms and machine learning techniques. One prominent 
approach is using Alpha-Beta Pruning. Alpha-Beta Pruning is a search technique that speeds up the 
decision-making process by reducing the number of nodes evaluated in the game tree without 
compromising the accuracy of finding the optimal move. By pruning branches that do not need to be 
explored, the algorithm can more efficiently identify the best possible moves [1, 2]. 

The use of Alpha-Beta Pruning in Gomoku AI offers several advantages. First, it is computationally 

efficient, making it suitable for real-time game decision-makin. This efficiency is crucial for Gomoku, 
where the number of possible moves increases exponentially with the board's size and the progression 
of the game [3, 4]. Second, Alpha-Beta Pruning can be easily combined with value evaluation algorithm 
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to evaluate the desirability of different board states, allowing the AI to focus on promising lines of play 
[5]. Value evaluation algorithm can be designed based on various factors, such as the number of 
consecutive stones in a row, potential threats from the opponent, and defensive strategies. These 
algorithms help the AI not only to search more efficiently but also to simulate a more human-like 

approach [6, 7]. 
Moreover, the application of Alpha-Beta Pruning in Gomoku AI provides a foundation for further 

enhancement using machine learning techniques. For instance, deep learning techniques can help refine 
the evaluation function used by the Alpha-Beta algorithm. This combination can lead to a more nuanced 
understanding of game states, as deep learning models can learn complex patterns and strategies from a 
large dataset of historical games [8]. Additionally, reinforcement learning can be used to train the AI 
through self-play, continuously improving its performance by learning from past experiences and 
adjusting its strategies accordingly [9]. 

In recent years, the success of AI systems like AlphaGo, which defeated human champions in the 
game of Go, has demonstrated the potential of combining traditional search algorithms with machine 
learning techniques [10]. While Gomoku has a simpler rule set compared to Go, the challenges it 
presents are significant enough to warrant a similar approach. The development of a Gomoku AI using 
Alpha-Beta Pruning not only contributes to the field of game AI but also provides insights into efficient 
problem-solving techniques applicable to other domains. 

This paper explores the implementation of a Gomoku AI using the Alpha-Beta Pruning search 

algorithm. This paper will discuss the basic principles of the Alpha-Beta Pruning technique, its 
integration with value evaluation algorithm, and potential enhancements using machine learning. 
Through this exploration, this paper aims to demonstrate how a traditional search algorithm can be 
adapted and enhanced to tackle the strategic challenges posed by Gomoku, providing a robust and 
efficient AI solution for this timeless game.  

2.  Methodology 

2.1.  Minimax algorithm  
The Minimax algorithm is a depth-first search algorithm used in zero-sum games, where the total benefit 
for both parties is zero. This means that when one party gains an advantage, the other party loses an 
equal amount. In the set of possible moves, each player will choose the move that best for them and 

worst for their opponent. The game between the two parties can be represented as a decision tree. If the 
current level is the player's decision state, the player will choose the node that maximizes their benefit, 
which is called the MAX level. If the current level is the opponent's decision state, the player will choose 
the path that minimizes the opponent's benefit, which is called the MIN level.  

Thus, in the constructed decision tree, the nodes can be classified as MAX nodes (in the MAX level), 
MIN nodes (in the MIN level), and the leaf nodes. Each leaf node is scored by an evaluation function, 
and then the values are assigned to each node from bottom to top. MAX nodes take the maximum value 

among their child nodes as their current value, while MIN nodes take the minimum value among their 
child nodes as their current value. 

For example, here is a three-tier game tree with the square representing the first hand (choosing the 
most valued situation) and the circle representing the second hand (choosing the least valued situation), 
and the estimated values of the leaf nodes are 3, 15, 2, 14, 0, 14, 5, 7. In the MAX layer the largest child 
node is selected, while the smallest child node is chosen in the MIN layer. Ultimately, the search targets 
the leaf node with a value of 14 (Figure 1). 
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Figure 1. Minimax Algorithm Diagram 

2.2.  Negamax algorithm  

The Negamax algorithm is a variation of the Minimax algorithm, simplified by taking advantage of the 
zero-sum nature of games like Gomoku. For the player, the best strategy is equal to the opponent's worst 
strategy. Thus, by negating the payoff of the opponent, that is, converting the minimum to the negative 
of the opponent's maximum, the problem can be transformed into a maximization search problem. For 
example, here is a three-tier game tree with the same leaf nodes as Figure 1 and 2. But in this tree there 
is only the MAX layer. In each layer, the largest child node is selected, its value is negated, and the 
resulting negative number is then propagated to the parent node. Ultimately, the search still targets the 

leaf node with a value of 14. 

 

Figure 2. Negamax Algorithm Diagram 

2.3.  Alpha-beta pruning algorithm  

The Alpha-Beta Pruning algorithm is an enhancement of the Minimax algorithm that significantly 
improves computational efficiency by reducing the nodes evaluated in the search tree (Table 1). Alpha 
represents the lower limit of the current node, and Beta represents the upper limit. During the traversal 
of the search tree, if the Alpha value of a node is greater than or equal to the Beta value, then the subtree 
of the node does not need to be searched again, because the value passed down from the parent node is 
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already greater than or equal to (or less than or equal to) a larger (or smaller) value, which can no longer 
affect the answer. When implemented, the α and β values are continuously updated to the child node, 
and after the child node has been searched back to the parent node to continue updating the α and β 
values  (Figure 3). 

Table 1. Alpha-Beta Pruning Algorithm 

Alpha-Beta Pruning Algorithm 

Step 1. Initialization: Set the initial values for the root node with α=-∞ and β=+∞. 

Step 2. Propagation (from top to bottom): Pass the α and β values from the parent node to its child 
nodes during the top-down traversal. 
Step 3. Traceback (from bottom to top): For a parent MAX node, update its α value to match the β 
value of its child MIN node. Conversely, for a parent MIN node, update its β value to match the α 
value of its child MAX node. 

Step 4. Pruning (from left to right): If after updating, the condition α≥β is satisfied, prune the 

subtree rooted at that node, as further exploration of this branch is unnecessary. 
Repeat Steps 2 to 4 

 

 

Figure 3. Alpha-Beta Pruning Algorithm 

3.  Results and discussion 

3.1.  Value evaluation function  

The value evaluation function is designed to assess the board state at any given point in the game. It 
calculates a score based according to the current positions on the board, helping the AI decide the most 
advantageous move. The scoring rules are shown in the table 2 below. The AI finds the score shape by 
traversing the entire board, calculates its score against the opponent based on the score shape, and the 
value is its score minus the opponent's score. 
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Table 2. Score Rule 

Shape(1 for a chess and 0 for a space) Score 

(0, 1, 1, 0, 0) 50 

(0, 0, 1, 1, 0) 50 

(1, 1, 0, 1, 0) 200 

(0, 0, 1, 1, 1) 500 

(1, 1, 1, 0, 0) 500 

(0, 1, 1, 1, 0) 5000 

(0, 1, 0, 1, 1, 0) 5000 

(0, 1, 1, 0, 1, 0) 5000 

(1, 1, 1, 0, 1) 5000 

(1, 1, 0, 1, 1) 5000 

(1, 0, 1, 1, 1) 5000 

(1, 1, 1, 1, 0) 5000 

(0, 1, 1, 1, 1) 5000 

(0, 1, 1, 1, 1, 0) 50000 

(1, 1, 1, 1, 1) 99999999 

3.2.  Search algorithm  
The search algorithm is a vital part of the Gomoku AI, responsible for evaluating potential moves and 
determining the optimal strategy. The algorithm employed in the AI is a combination of the Negamax 

algorithm with Alpha-Beta pruning. Given the search depth and the state of the board, the AI traverses 
all possible moves and simulates the state of the game after each move. When the search depth is reached 
or the tie is out, AI calculates the score by the value evaluation function, constructs a search tree with 
the Negamax Algorithm, uses Alpha-Beta Pruning Algorithm to improve the search efficiency and 
finally find the best drop point. Additionally, in the search process, AI will give priority to searching the 
grid around the spot on the checkerboard, triggering the pruning operation earlier to improve efficiency. 

3.3.  AI performance 

The implementation of the Alpha-Beta Pruning algorithm within the Gomoku AI provided significant 
improvements in both computational efficiency and the quality of move selection. The algorithm was 
tested by simulating multiple games between the AI and a human player. One of the key metrics 
evaluated was the number of AI search nodes, which directly correlates with the AI’s response time. 

Consider the Gomoku illustrated in Figure 4, where the AI controls the white chess, and the human 

player controls the black chess. It is evident that with a search depth set to 3, the AI is capable of 
defeating players with a certain level of proficiency. Moreover, the implementation of the pruning in the 
Gomoku AI markedly enhances the efficiency of the decision-making process. As depicted in Figure 5, 
the number of searches conducted by the Gomoku AI can reach several thousand, with the pruning 
action becoming more frequent and increasing progressively with the number of games played. By 
employing the Alpha-Beta Pruning algorithm, the computation time for the Gomoku AI can be 
maintained within 2 seconds, significantly improving the AI's decision-making speed. 
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Figure 4. Human vs AI Gameplay Interface 

 

Figure 5. Algorithm Performance Efficiency 
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4.  Discussion 

4.1.  Limitations 

The primary limitation of the current AI search algorithm is its computational complexity. As the search 
depth increases, the number of possible game states grows exponentially. This results in significant 
computational time, especially when the depth is set to a higher value to achieve better accuracy and 
performance. 

Also, the algorithm uses a fixed search depth, which means it does not adapt based as the game 
progresses. In some situations, a deeper search might be necessary, while in others, a shallow search 
would suffice. This lack of flexibility can either lead to unnecessary computation or suboptimal 

decision-making. 

4.2.  Potential improvements  
Potential improvements for the AI algorithm focus on incorporating reinforcement learning (RL) 
techniques. By integrating RL, the AI could learn from past games, adapting its strategies to improve 
performance over time. Unlike traditional search algorithms, which rely on predefined evaluation 

functions, an RL-based approach would enable the AI to develop its own evaluation criteria by 
maximizing cumulative rewards. This could result in a more sophisticated decision-making process, 
allowing the AI to handle complex game situations more effectively. Additionally, combining RL with 
deep learning could further enhance the AI's ability to recognize patterns and make more accurate 
predictions, leading to a more robust Gomoku AI. 

5.  Conclusion 

This paper presents the implementation of a Gomoku AI utilizing the Alpha-Beta pruning algorithm 
combined with the Negamax algorithm, achieving a balance between computational efficiency and 
accuracy in move selection. With a search depth of 3, the AI successfully outperforms opponents with 
moderate skill levels. And the operation of pruning algorithm greatly improves the search efficiency, 
and the calculation time of AI is controlled within 2 seconds. However, limitations such as fixed search 
depth and increasing computational complexity as the game progresses are significant challenges. These 

constraints can lead to suboptimal decisions or unnecessary computations depending on the game state. 
Despite these limitations, there is considerable potential for further enhancement. By incorporating 
reinforcement learning (RL) and deep learning techniques, the AI could adapt its strategies through self-
play, improving its performance over time. This integration would enable the system to make more 
flexible and right decisions. Such advancements not only improve the Gomoku AI’s strategic 
capabilities, but also provide valuable insights in other real-time decision-making tasks within games 
and other domains. 
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