

Design of a Gomoku AI Based on the Alpha-Beta Pruning

Search Algorithm

Yiheng Xu

School of Big Data and Software, Chongqing University, Chongqing, 401331, China

20221781@stu.cqu.edu.cn

Abstract. This paper presents the implementation of a Gomoku AI based on the alpha-beta

pruning search algorithm and the Negamax algorithm. Gomoku, a traditional board game known

for its strategic depth, poses significant challenges in AI development due to the exponential

increase in possible moves. The AI leverages the computational efficiency of Alpha-Beta

Pruning, which enhances the Negamax algorithm by reducing the number of nodes that need to

be evaluated in the game tree. This combination allows for faster decision-making without

compromising accuracy. Additionally, a value evaluation function is used to assess board states

and guide the AI in selecting optimal moves. In the results the performance of the AI was tested

through simulations, demonstrating great performance in move selection and computational

efficiency compared to traditional methods. The paper also explores potential improvements,

including the integration of reinforcement learning (RL) techniques to further enhance the AI's

adaptability and strategic decision-making capabilities.

Keywords: Gomoku, Negamax algorithm, alpha-beta pruning.

1. Introduction

Gomoku is a traditional board game that has captured the interest of players worldwide due to its simple
rules and deep strategic complexity. Although it is not as complex as chess and Go, Gomoku presents
significant challenges in terms of strategic planning and move prediction. The objective is to be the first
to align five stones of the same color in a row, either horizontally, vertically, or diagonally, on a 15x15
board. This game has a rich history and is played in both casual and competitive settings, with various
rule sets that add complexity, such as the "forbidden move" rules in competitive play to balance the

advantage of the first player.
The development of artificial intelligence (AI) for Gomoku has progressed significantly, particularly

with the advent of advanced search algorithms and machine learning techniques. One prominent
approach is using Alpha-Beta Pruning. Alpha-Beta Pruning is a search technique that speeds up the
decision-making process by reducing the number of nodes evaluated in the game tree without
compromising the accuracy of finding the optimal move. By pruning branches that do not need to be
explored, the algorithm can more efficiently identify the best possible moves [1, 2].

The use of Alpha-Beta Pruning in Gomoku AI offers several advantages. First, it is computationally

efficient, making it suitable for real-time game decision-makin. This efficiency is crucial for Gomoku,
where the number of possible moves increases exponentially with the board's size and the progression
of the game [3, 4]. Second, Alpha-Beta Pruning can be easily combined with value evaluation algorithm

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

49

to evaluate the desirability of different board states, allowing the AI to focus on promising lines of play
[5]. Value evaluation algorithm can be designed based on various factors, such as the number of
consecutive stones in a row, potential threats from the opponent, and defensive strategies. These
algorithms help the AI not only to search more efficiently but also to simulate a more human-like

approach [6, 7].
Moreover, the application of Alpha-Beta Pruning in Gomoku AI provides a foundation for further

enhancement using machine learning techniques. For instance, deep learning techniques can help refine
the evaluation function used by the Alpha-Beta algorithm. This combination can lead to a more nuanced
understanding of game states, as deep learning models can learn complex patterns and strategies from a
large dataset of historical games [8]. Additionally, reinforcement learning can be used to train the AI
through self-play, continuously improving its performance by learning from past experiences and
adjusting its strategies accordingly [9].

In recent years, the success of AI systems like AlphaGo, which defeated human champions in the
game of Go, has demonstrated the potential of combining traditional search algorithms with machine
learning techniques [10]. While Gomoku has a simpler rule set compared to Go, the challenges it
presents are significant enough to warrant a similar approach. The development of a Gomoku AI using
Alpha-Beta Pruning not only contributes to the field of game AI but also provides insights into efficient
problem-solving techniques applicable to other domains.

This paper explores the implementation of a Gomoku AI using the Alpha-Beta Pruning search

algorithm. This paper will discuss the basic principles of the Alpha-Beta Pruning technique, its
integration with value evaluation algorithm, and potential enhancements using machine learning.
Through this exploration, this paper aims to demonstrate how a traditional search algorithm can be
adapted and enhanced to tackle the strategic challenges posed by Gomoku, providing a robust and
efficient AI solution for this timeless game.

2. Methodology

2.1. Minimax algorithm
The Minimax algorithm is a depth-first search algorithm used in zero-sum games, where the total benefit
for both parties is zero. This means that when one party gains an advantage, the other party loses an
equal amount. In the set of possible moves, each player will choose the move that best for them and

worst for their opponent. The game between the two parties can be represented as a decision tree. If the
current level is the player's decision state, the player will choose the node that maximizes their benefit,
which is called the MAX level. If the current level is the opponent's decision state, the player will choose
the path that minimizes the opponent's benefit, which is called the MIN level.

Thus, in the constructed decision tree, the nodes can be classified as MAX nodes (in the MAX level),
MIN nodes (in the MIN level), and the leaf nodes. Each leaf node is scored by an evaluation function,
and then the values are assigned to each node from bottom to top. MAX nodes take the maximum value

among their child nodes as their current value, while MIN nodes take the minimum value among their
child nodes as their current value.

For example, here is a three-tier game tree with the square representing the first hand (choosing the
most valued situation) and the circle representing the second hand (choosing the least valued situation),
and the estimated values of the leaf nodes are 3, 15, 2, 14, 0, 14, 5, 7. In the MAX layer the largest child
node is selected, while the smallest child node is chosen in the MIN layer. Ultimately, the search targets
the leaf node with a value of 14 (Figure 1).

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

50

Figure 1. Minimax Algorithm Diagram

2.2. Negamax algorithm

The Negamax algorithm is a variation of the Minimax algorithm, simplified by taking advantage of the
zero-sum nature of games like Gomoku. For the player, the best strategy is equal to the opponent's worst
strategy. Thus, by negating the payoff of the opponent, that is, converting the minimum to the negative
of the opponent's maximum, the problem can be transformed into a maximization search problem. For
example, here is a three-tier game tree with the same leaf nodes as Figure 1 and 2. But in this tree there
is only the MAX layer. In each layer, the largest child node is selected, its value is negated, and the
resulting negative number is then propagated to the parent node. Ultimately, the search still targets the

leaf node with a value of 14.

Figure 2. Negamax Algorithm Diagram

2.3. Alpha-beta pruning algorithm

The Alpha-Beta Pruning algorithm is an enhancement of the Minimax algorithm that significantly
improves computational efficiency by reducing the nodes evaluated in the search tree (Table 1). Alpha
represents the lower limit of the current node, and Beta represents the upper limit. During the traversal
of the search tree, if the Alpha value of a node is greater than or equal to the Beta value, then the subtree
of the node does not need to be searched again, because the value passed down from the parent node is

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

51

already greater than or equal to (or less than or equal to) a larger (or smaller) value, which can no longer
affect the answer. When implemented, the α and β values are continuously updated to the child node,
and after the child node has been searched back to the parent node to continue updating the α and β
values (Figure 3).

Table 1. Alpha-Beta Pruning Algorithm

Alpha-Beta Pruning Algorithm

Step 1. Initialization: Set the initial values for the root node with α=-∞ and β=+∞.

Step 2. Propagation (from top to bottom): Pass the α and β values from the parent node to its child
nodes during the top-down traversal.
Step 3. Traceback (from bottom to top): For a parent MAX node, update its α value to match the β
value of its child MIN node. Conversely, for a parent MIN node, update its β value to match the α
value of its child MAX node.

Step 4. Pruning (from left to right): If after updating, the condition α≥β is satisfied, prune the

subtree rooted at that node, as further exploration of this branch is unnecessary.
Repeat Steps 2 to 4

Figure 3. Alpha-Beta Pruning Algorithm

3. Results and discussion

3.1. Value evaluation function

The value evaluation function is designed to assess the board state at any given point in the game. It
calculates a score based according to the current positions on the board, helping the AI decide the most
advantageous move. The scoring rules are shown in the table 2 below. The AI finds the score shape by
traversing the entire board, calculates its score against the opponent based on the score shape, and the
value is its score minus the opponent's score.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

52

Table 2. Score Rule

Shape(1 for a chess and 0 for a space) Score

(0, 1, 1, 0, 0) 50

(0, 0, 1, 1, 0) 50

(1, 1, 0, 1, 0) 200

(0, 0, 1, 1, 1) 500

(1, 1, 1, 0, 0) 500

(0, 1, 1, 1, 0) 5000

(0, 1, 0, 1, 1, 0) 5000

(0, 1, 1, 0, 1, 0) 5000

(1, 1, 1, 0, 1) 5000

(1, 1, 0, 1, 1) 5000

(1, 0, 1, 1, 1) 5000

(1, 1, 1, 1, 0) 5000

(0, 1, 1, 1, 1) 5000

(0, 1, 1, 1, 1, 0) 50000

(1, 1, 1, 1, 1) 99999999

3.2. Search algorithm
The search algorithm is a vital part of the Gomoku AI, responsible for evaluating potential moves and
determining the optimal strategy. The algorithm employed in the AI is a combination of the Negamax

algorithm with Alpha-Beta pruning. Given the search depth and the state of the board, the AI traverses
all possible moves and simulates the state of the game after each move. When the search depth is reached
or the tie is out, AI calculates the score by the value evaluation function, constructs a search tree with
the Negamax Algorithm, uses Alpha-Beta Pruning Algorithm to improve the search efficiency and
finally find the best drop point. Additionally, in the search process, AI will give priority to searching the
grid around the spot on the checkerboard, triggering the pruning operation earlier to improve efficiency.

3.3. AI performance

The implementation of the Alpha-Beta Pruning algorithm within the Gomoku AI provided significant
improvements in both computational efficiency and the quality of move selection. The algorithm was
tested by simulating multiple games between the AI and a human player. One of the key metrics
evaluated was the number of AI search nodes, which directly correlates with the AI’s response time.

Consider the Gomoku illustrated in Figure 4, where the AI controls the white chess, and the human

player controls the black chess. It is evident that with a search depth set to 3, the AI is capable of
defeating players with a certain level of proficiency. Moreover, the implementation of the pruning in the
Gomoku AI markedly enhances the efficiency of the decision-making process. As depicted in Figure 5,
the number of searches conducted by the Gomoku AI can reach several thousand, with the pruning
action becoming more frequent and increasing progressively with the number of games played. By
employing the Alpha-Beta Pruning algorithm, the computation time for the Gomoku AI can be
maintained within 2 seconds, significantly improving the AI's decision-making speed.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

53

Figure 4. Human vs AI Gameplay Interface

Figure 5. Algorithm Performance Efficiency

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

54

4. Discussion

4.1. Limitations

The primary limitation of the current AI search algorithm is its computational complexity. As the search
depth increases, the number of possible game states grows exponentially. This results in significant
computational time, especially when the depth is set to a higher value to achieve better accuracy and
performance.

Also, the algorithm uses a fixed search depth, which means it does not adapt based as the game
progresses. In some situations, a deeper search might be necessary, while in others, a shallow search
would suffice. This lack of flexibility can either lead to unnecessary computation or suboptimal

decision-making.

4.2. Potential improvements
Potential improvements for the AI algorithm focus on incorporating reinforcement learning (RL)
techniques. By integrating RL, the AI could learn from past games, adapting its strategies to improve
performance over time. Unlike traditional search algorithms, which rely on predefined evaluation

functions, an RL-based approach would enable the AI to develop its own evaluation criteria by
maximizing cumulative rewards. This could result in a more sophisticated decision-making process,
allowing the AI to handle complex game situations more effectively. Additionally, combining RL with
deep learning could further enhance the AI's ability to recognize patterns and make more accurate
predictions, leading to a more robust Gomoku AI.

5. Conclusion

This paper presents the implementation of a Gomoku AI utilizing the Alpha-Beta pruning algorithm
combined with the Negamax algorithm, achieving a balance between computational efficiency and
accuracy in move selection. With a search depth of 3, the AI successfully outperforms opponents with
moderate skill levels. And the operation of pruning algorithm greatly improves the search efficiency,
and the calculation time of AI is controlled within 2 seconds. However, limitations such as fixed search
depth and increasing computational complexity as the game progresses are significant challenges. These

constraints can lead to suboptimal decisions or unnecessary computations depending on the game state.
Despite these limitations, there is considerable potential for further enhancement. By incorporating
reinforcement learning (RL) and deep learning techniques, the AI could adapt its strategies through self-
play, improving its performance over time. This integration would enable the system to make more
flexible and right decisions. Such advancements not only improve the Gomoku AI’s strategic
capabilities, but also provide valuable insights in other real-time decision-making tasks within games
and other domains.

References

[1] Sravya M, Sanjan V and Tejashwini B 2018 Implementation of sequential and parallel alpha-beta
pruning algorithm. International Journal of Innovations in Engineering and Technology, 7(8),
98-104.

[2] Aashrit G and Anita S 2023 Chess Board: Performance of Alpha–Beta Pruning in Reducing Node
Count of Minimax Tree. Intelligent Technologies and Robotics, 661-671.

[3] Judea P 2022 The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm and its
Optimality. Probabilistic and Causal Inference: The Works of Judea Pearl, 91-102.

[4] Shevtekar S S, Malpe M and Bhaila M 2022 Analysis of Game Tree Search Algorithms Using
Minimax Algorithm and Alpha-Beta Pruning. International Journal of Scientific Research in
Computer Science Engineering and Information Technology, 328-333.

[5] Singhal S P and Sridevi M 2019 Comparative study of performance of parallel alpha Beta Pruning
for different architectures. 2019 IEEE 9th International Conference on Advanced Computing

(IACC), 115-119.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

55

[6] Naoyuki S and Kokolo I 2016 Three types of forward pruning techniques to apply the alpha beta
algorithm to turn-based strategy games. 2016 IEEE Conference on Computational Intelligence
and Games (CIG), 1-6.

[7] Che Z H and Lv F2024 Design and implementation of Pentoku game based on Alpha-Beta

pruning algorithm. Computer programming skills and maintenance, 131-133.
[8] Liang W, et al. 2023 Mastering Gomoku with AlphaZero: A Study in Advanced AI Game Strategy.

Sage Science Review of Applied Machine Learning, 6(11), 32-43.
[9] Li X, He S, Wu L, Chen D and Zhao Y 2020 A game model for Gomoku based on deep learning

and monte carlo tree search. Lecture Notes in Electrical Engineering, 88-97.
[10] Jim X 2016 The Evolution of Computing: AlphaGo. Computing in Science & Engineering, 18,

4-7.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/94/2024MELB0064

56

