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Abstract. Vehicle accumulation in urban regions is a significant complication, giving rise to 

monetary and sustainability-related concerns. The most important procedure for effective traffic 

management is the precise forecasting of traffic flow. This study leverages Long Short-Term 

Memory (LSTM) networks to predict traffic volume on Interstate-94 (I-94) in the US, using 

hourly traffic and weather data from 2012 to 2018, which was normalized using Min-Max scaling, 

and the LSTM model was trained on 80% of the data, with the remaining 20% used for testing. 

Evaluation of the model was conducted using performance indicators such as Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE). Showing its strong forecasting ability, 

evidenced by its low MAE and RMSE, which highlight the model's high accuracy, and forecast 

the traffic flow under varying conditions. This study highlights the effectiveness of LSTM 

networks for traffic prediction, offering a significant tool for the management of the metropolitan 

areas. Upcoming studies might prioritize on real-time implementation and integrating additional 

data sources to further enhance prediction accuracy. 
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1.  Introduction 

The traffic jam caused by massive traffic flow has become a critical challenge faced by cities worldwide, 
with significant implications for economic productivity and environmental protection works [1]. As 
cities expand and more people acquire vehicles, this problem has become a daily routine for millions of 
citizens. This not only results in extended travel times but also contributes to higher fuel consumption 
and increased greenhouse gas emissions, further exacerbating environmental concerns [2]. 

Traditional traffic management systems often rely on static models and historical data to make 

decisions [3]. These methods, while useful in certain scenarios, frequently fall short when it comes to 
adapting to real-time traffic conditions and predicting future traffic patterns [4]. The dynamic and 
nonlinear nature of urban traffic flow requires more advanced predictive models capable of handling the 
complexity and variability inherent in such systems. 

In recent times, machine learning and deep learning strategies have surfaced as powerful tools for 
addressing the challenges of traffic prediction. These techniques autonomously extract knowledge from 
large datasets, recognizing patterns and generating predictions that are more precise than those derived 

from traditional models. Among these techniques, Long Short-Term Memory (LSTM) networks, a 
specific variant of recurrent neural networks (RNNs), shows particular promise for time-series 
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forecasting tasks [5]. LSTM networks are developed to address the shortcomings of conventional RNNs, 
by addressing issues related to long-term dependencies and gradient vanishing, which makes them 
particularly effective for sequential data, such as traffic flow [6]. 

By capturing temporal dependencies in data, LSTM networks are particularly suited for traffic 

congestion prediction. With considering the sequence of past traffic conditions, LSTM models can 
forecast future traffic states with greater accuracy. This capability is particularly valuable in urban 
environments, where traffic patterns can change rapidly due to a variety of factors such as weather 
conditions, roadworks, accidents, and fluctuations in demand during peak hours [7]. 

This study aims to develop a predictive model based on LSTM networks to leverage Long Short-
Term Memory (LSTM) models to predict traffic volume across Interstate-94 (I-94) in the US, using a 
dataset that includes hourly traffic and weather data from 2012 to 2018 [8]. The choice of this region is 
motivated by its complex and heavily congested traffic network, which presents a challenging yet 

representative case for evaluating the effectiveness of the LSTM model. The primary objective of this 
study is to equip city architects and traffic management authorities with a reliable tool. For short-term 
traffic forecasting, enabling more informed decisions that can alleviate congestion and improve the 
efficiency of the transportation system. 

2.  Methodology 

2.1.  Data sources and descriptions 
The Interstate Traffic Volume Dataset comprises information about the hourly traffic volume on the 
West-bound lane of Interstate-94 (I-94) in the US. The dataset includes hourly weather and temperature 
reports from 2012 to 2018 (Table 1). 

Table 1. Data Baseline 

Timestamp Temp Rain Snow Clouds Weather_m Holidays Volume 

2012-10-02 09:00:00 288.28 0.0 0.0 40 Clouds None 5545 

2015-07-24 03:00:00 294.2 5.25 0.0 90 
Heavy 

Rain 
None 401 

2015-12-26 11:00:00 271.17 0.0 0.21 90 
Light 
Snow 

None 2013 

 
The information in the dataset can be used to understand the flow of traffic on the interstate with 

respect to time and date and can be helpful in prediction of rush hours, weather forecasting as well as 
planning expansions of interstates and highways in the US. 

Furthermore, weather data collected hourly and holiday information are incorporated to assess their 
influence on traffic volume. To normalize the data, the min-max scaling technique is applied preprocess 
the traffic data, preventing issues such as gradient explosion and accelerating the model’s convergence. 
The equation is given below: 

 𝑦 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                  (1) 

Where y refers to the normalized value, and x corresponds to the original value, and 𝑥max  refers to 

the highest value, and 𝑥𝑚𝑖𝑛 to the lowest value in the original dataset. 

2.2.  Data preprocessing 
The statistical analysis provides an initial exploration of the dataset, offering insights into its key 

characteristics. This involves calculating statistics that describe, such as mean, median, standard 
deviation, and range, and to summarize the distribution and central tendencies of the data. Additionally, 
this analysis helps identify any outliers or anomalies and examines correlations between variables. By 
understanding the basic statistical properties of the data, this step ensures that the subsequent data 
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preprocessing and model development processes are informed and appropriately tailored to the dataset's 
characteristics (Table 2). 

Table 2. Data Preprocessing 

 count mean std min 25% 50% 75% max 

temp 48204 281.205 13.338 0 272.16 282.45 291.806 310.07 

rain_1h 48204 0.3342 44.789 0 0 0 0 9831.3 

Snow_1h 48204 0.0002 0.008 0 0 0 0 0.51 

all 48204 49.362 39.015 0 1 64 90 100 

volume 48204 3259.818 1986.86 0 1193 3380 4933 7280 

2.3.  Indicator selection  
The Mean Absolute Error (MAE) is a measurement of the average magnitude of errors between 
predicted and actual traffic values. It is defined as: 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦

^

𝑖|𝑁
𝑖=1

                                                           (2) 

Where 𝑦𝑖 is the actual traffic value, 𝑦
^

𝑖  is marked as the prediction result, and 𝑁 is the count of the 

predictions. Lower values are indicative of better performance, and this is used to assess the model's 
accuracy. 

Root Mean Square Error (RMSE) calculates the square root of the average squared difference 
between predicted and actual values: 

 𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑦𝑖 − 𝑦

^

𝑖)2𝑁
𝑖=1

                                                 (3) 

𝑅𝑀𝑆𝐸 is sensitive to larger errors and is therefore useful for understanding the variance in prediction 
accuracy. 

2.4.  Methods introduction 

The LSTM network is designed to capture temporal dependencies in sequential data, making it ideal for 
time-series forecasting such as traffic flow prediction. The input to the model includes a sequence of 
traffic flow data from various detectors, and the output is the predicted traffic flow for the subsequent 
time steps (Figure 1). 

The LSTM architecture includes the following layers: Input Layer: Receives the sequence of 
normalized traffic data, typically over a fixed window size.  LSTM Layers: One or more LSTM layers 

to learn the temporal dependencies in the traffic data, equipped with forget gates to manage long-term 
dependencies. Dense (Fully Connected) Layer: Maps the LSTM outputs to the desired prediction output. 
Output Layer: Produces the predicted traffic flow values for the upcoming time steps [9, 10]. 

 

Figure 1. LSTM Network [4] 
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3.  Results and discussion 

3.1.  Data overview 

Creating a data overview is essential for gaining an initial understanding of the dataset. It helps to 
identify key patterns, trends, and anomalies in the data, such as seasonal variations or outliers, which 
could significantly impact the analysis. Additionally, visualizing the relationships between different 
variables, like weather conditions and traffic volume, provides insights into potential correlations and 
dependencies. This step is crucial for informing the subsequent data preprocessing and modeling 
strategies, ensuring that the analysis is based on a thorough understanding of the dataset's characteristics. 
To generate the overview plot of the dataset, first, select the columns of interest, which include 

temperature (temp), rainfall (rain_1h), snowfall (snow_1h), cloud coverage (clouds_all), and traffic 
volume (traffic_volume). These columns are then extracted from the main DataFrame df_raw into a new 
DataFrame plot_features. Next, use the plot() function with subplots=True to create individual subplots 
for each feature, and set the figure size to (12,8) for clarity. This results in a series of time series plots 
that visually represent the data across different weather and traffic metrics (Figure 2). 

 

Figure 2. Data Overview 

Figure 2 provides an overview of the dataset describing the traffic volume of the Metro Interstate, 
which captures traffic volumes and varying weather conditions over time. The subplots display different 
variables: temperature (temp), rainfall (rain_1h), snowfall (snow_1h), cloud coverage (clouds_all), and 
traffic volume (traffic_volume). The time series spans from 2012 to 2018. Notable features include a 
relatively stable temperature trend, sporadic rain and snow events, varying cloud coverage, and 
fluctuating traffic volumes, which are influenced by these weather conditions and seasonal patterns. 

This visualization highlights the interactions between weather factors and traffic flow. 

3.2.  LSTM model results 
In the LSTM operation, the dataset was segmented into sequences, and then split into training sets (80%) 
and the left are used as testing sets. The certain LSTM model was programmed by PyTorch. It features 
an LSTM layer. Subsequently, a linear output layer is utilized to capture temporal dependencies in the 

traffic data. Using the Adam optimizer and the Mean Squared Error (MSE) loss function, the model 
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underwent training for 100 epochs, adjusting its settings to minimize the loss. Metrics such as MAE, 

RMSE, and 𝑅2 are used to evaluate the model's performance on the test set and visualizations were 
created to compare actual versus predicted traffic volumes, gives a clear view of the model's accuracy 
and convergence during training (Figure 3). 

 

Figure 3. Actual vs. Predicted Values 

The LSTM model's performance is visually performed by the plot above between the actual and 
predicted values. In this plot, the actual traffic volumes are plotted alongside the predicted values 
generated by the model. The traffic data's underlying patterns are accurately captured by the model by 

a close alignment. Any significant deviations between the curves highlight areas where the model's 
predictions may need improvement, providing valuable insights for further model refinement and 
optimization. This comparison is essential for validating the model's applicability in real-life situations 
(Figure 4). 

 

Figure 4. Loss Curve 
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The loss curve illustrates how the model's training is progressing by plotting the loss value against 
the number of epochs. As the training progresses, the curve typically shows a decreasing trend, 
demonstrating that the model is in the process of acquiring knowledge and minimizing the prediction 
error. A smooth, downward-sloping loss curve suggests that the model is converging well, while any 

plateaus or fluctuations may indicate issues such as overfitting or the need for further tuning. This curve 
is crucial for assessing the effectiveness of the training process and determining when the model has 
reached optimal performance. 

3.3.  Simulation results 
Several key metrics were used to evaluate the performance of the LSTM model. The Mean Absolute 

Error (MAE) was 353.79, which is the average absolute difference between predicted and actual traffic 
volumes. The Mean Squared Error (MSE) was 227,755.51, reflecting the model's overall prediction 
error. The Root Mean Squared Error (RMSE), which means the magnitude of prediction errors, was 

477.24. Lastly, the 𝑅2  was 0.9412, explains 94.12% of the changes in the traffic volume data, 
demonstrating a strong fit. 

 

Figure 5. Prediction Evaluation 

This graph compares the true traffic volume (in blue) with the predicted traffic volume (in orange) 
generated by the LSTM model over a series of time steps (Figure 5). According to close alignment 
between two curves, the model has effectively captured the underlying patterns in the data. Although 
there are minor deviations, the predicted values generally follow the trend of the actual traffic volumes, 
which proves the model's ability to forecast traffic flow accurately. This visual comparison is a vital 

validation of the algorithms’ performance. 

Table 3. Simulation Results 

Metric Value 

MAE 353.79 

MSE 227,755.51 

RMSE 477.24 

𝑅2 0.9412 

 

Model Accuracy: The LSTM model exhibits strong accuracy, reflected by the low Mean Absolute 
Error (MAE) of 353.79. It can be found that the model's predictions are in close agreement with realistic 
traffic volumes on average (Table 3). 

Prediction Precision: The Root Mean Square Error (RMSE) of 477.24 suggests that most prediction 
errors are within a relatively small range, further affirming the model's precision. 

Variance Explanation: The high value 𝑅2of 0.9412 demonstrates that the model effectively captures 
and explains over 94% of the fluctuation in traffic volume data, which indicates the model and the 
observed data have a strong compatibility. 
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Overall Model Performance: The combination of these metrics-two very low values along with a 

high 𝑅2 score-provides strong evidence that the LSTM model is well-suited for traffic flow prediction 
tasks. The results imply that the model can be relied upon to make accurate traffic volume forecasts. 
Effective traffic management and planning requires this crucial factor. 

The effectiveness of using LSTM networks is underlined by these findings for time-series forecasting, 
particularly in scenarios where accurate predictions of dynamic, real-world data are necessary. 

4.  Conclusion 

This study highlighted the potential of Long Short-Term Memory (LSTM) networks in accurately 
making the prediction of the traffic flow on Interstate-94. Furthermore, The LSTM model successfully 
identifies and utilizes the time-based patterns present in traffic data, provided precise forecasts, which 
is proved by the low Mean Absolute Error and Root Mean Square Error values. The analysis reveals 
that LSTM models are well-suited for handling the complexities of urban traffic patterns, which offers 
a reliable tool for improving traffic management systems. 

Moreover, the study emphasizes the significance of the advanced deep learning algorithms 

particularly LSTM in modern urban planning. The implementation of LSTM models in traffic 
forecasting plays an important role to increase the ability of better predicting and managing traffic 
congestion. Combined up-to-the-minute data, including weather conditions with roadworks, future 
research might improve the model's forecasting capability even more. Additionally, deploying the model 
in a current traffic management system could provide officers with the meaningful guidance needed to 
optimize traffic flow. It can help to reduce the overloaded traffic condition, and improve the satisfaction 
of all citizens.  
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