

Implementation of Parallel Optimization Algorithms for NLP:

Mini-batch SGD, SGD with Momentum, AdaGrad Adam

Wendi Huang

College of Information and Communication Engineering, Beijing University of
Technology, Beijing, China

1811020103@stu.hrbust.edu.cn

Abstract. With the rapid development of machine learning technology, optimization algorithms

and optimizers have become key to the development of related technologies contemporarily.

Models need the help of optimizers to meet other performance indicators while saving computing

resources. This research focuses on comparisons between optimizers, in the context of text

sentiment classification tasks. The optimizers mainly compared in this article are mini batch

SGD, momentum SGD, Adagrad and Adam. Through comparative experiments, it was found

that SGD and its variants have a high dependence on the initial learning rate setting, while the

performance of Adagrad and Adam is relatively balanced. Although the training time of Adagrad

is shorter than that of Adam, its principal formula has flaws, which are not reflected in this task.

The conclusions drawn in this article through comparison can point out the advantages and

disadvantages of each optimizer, and can help realize better optimizers in subsequent research.

Keywords: TextCNN, SGD, AdaGrad, Adam.

1. Introduction

Machine learning can be thought of as: through data and algorithms, the machine learns patterns from a
large amount of historical data to classify or predict new samples. The development history of machine
learning can be traced back to the mid-20th century. The Turing test was developed by Alan Turing in
1950 to assess a computer's level of intelligence [1]. According to the Turing Test, a machine is
considered intelligent if it can communicate with a human being and not be able to discern that it is a

machine. In 1952, IBM scientist Arthur Samuel created a checkers program [2]. By watching what is
currently happening, the computer program can pick up an implicit model that will help it guide future
actions more effectively. The phrase "machine learning" was first used by Arthur Samuel, who defined
it as a branch of research that endows computers with abilities that are not explicitly programmed. The
nearest neighbor method was developed in 1967 and made it possible for computers to recognize simple
patterns. [3]. The kNN algorithm's central principle is that if the majority of a sample's k nearest adjacent
samples in the feature space belong to a specific category, the sample likewise belongs to that category

and shares its features. In particular, Werbos introduced the multi-layer perceptron model in 1981 as
part of the neural network backpropagation (BP) technique. The "decision tree" machine learning
algorithm was first developed by Quinlan in 1986 [4]. Freund and Schapire introduced AdaBoost, a
strong machine learning model, in 1997. The biggest feature of this algorithm is that it combines weak
classifiers to form a strong classifier, and the classification effect is better than other strong classifiers.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

226

In 1995, Yan LeCun introduced the Convolutional Neural Network [5]. Influenced by biological vision
systems, convolutional neural networks (CNN) commonly incorporate at least two nonlinear trainable
convolutional layers, in addition to two fixed nonlinear convolutional layers. This specific configuration
aims to imitate the roles of the V1 and V2 areas of the visual cortex, mirroring the functionalities of both

Simple and Complex cells located within these regions. Vapnik and Cortes introduced the strong
Support Vector Machine (SVM) in 1995 [6]. Breiman presented a model Random Forest in 2001 that
has the ability to mix several decision trees [7]. A significant amount of input variables can be handled
by random forest, which also has excellent robustness, high accuracy, a quick learning curve, and no
over-fitting issues. In 2006, Hinton proposed the Deep Belief Network (DBN), opening a new era of
deep learning [8]. Hinton suggested sparse coding, often known as automated coding, which involves
utilizing neural networks to minimize the dimensionality of data. In 2017, Vaswani et al. proposed the
Transformer model, which greatly enhanced the ability to complete tasks involving natural language

processing [9].
A function's minimum value can be found using the optimization technique known as gradient

descent. Its idea is to iterate along the opposite direction of the gradient of the function, thereby
continuously approaching the minimum value of the function. In 1951, Herbert Robbins and Sutton
Monro proposed the famous Robbins-Monro algorithm, which is the prototype of the SGD algorithm
[10]. A variation of the Gradient Descent algorithm called Stochastic Gradient Descent employs only
one or a small batch of data samples to calculate gradients at each iteration rather than the full training

set. With the rise of deep learning, SGD has become one of the main algorithms for training large-scale
neural networks. Researchers have proposed many variants of SGD (e.g., momentum method [11],
Nesterov accelerated gradient (NAG) [12], Adagrad [13], Adam [14]) to solve the problems of
traditional SGD in the training process.

2. Data and method

2.1. Algorithms and Model
Mini-batch SGD is a compromise between the SGD and BGD algorithms. In mini-batch SGD, a random
selection of ξ data samples is used for parameter updates during gradient descent. When the dataset is
large, training the algorithm is very slow. Compared to BGD, using mini-batch SGD to update
parameters is faster, which helps to converge more robustly and avoid local optima. Compared to SGD,

using mini-batch SGD has higher computational efficiency and can help train models more quickly. The
principal formula of Mini Batch SGD is as follows:

 𝑥𝑡+1 = 𝑥𝑡 −𝜂𝛻𝐹(𝑥) (1)

 𝐹(𝑥) = 𝑁−1∑ 𝑓(𝑥; 𝜉𝑛)
𝑁
𝑛=1

 (2)

Here, xt represents the model parameters, η is the learning rate, f is the loss function, and ξ is a mini-

batch sample drawn from the dataset. A technique called momentum aids in suppressing oscillations
and accelerating SGD in pertinent directions. Momentum SGD takes each step down as a combination
of the accumulated direction from previous steps and the gradient direction at the current point. As
shown in the following Fig 1 (b). In fact, a tiny bit of the update vector from the prior time step is added
to the current update vector as shown in Fig. 1 [15].

Figure 1. Comparison between SGD without and with momentum[15].

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

227

The principle formula of Momentum SGD is as follows, where vt is the current momentum and γ is
the momentum decay coefficient.

 𝑋𝑡+1 = 𝑋𝑡 − 𝑣𝑡 (3)

 𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂𝛻𝐹(𝑥) (4)

AdaGrad is an adaptive learning rate gradient descent algorithm, proposed by Duchi et al. in 2011.
This algorithm is mainly designed to address the issue of a constant learning rate in standard gradient
descent algorithms. In the standard SGD algorithm, it may oscillate close to the minimum and fail to
converge if the learning rate is too high; a slow pace of convergence is the result of an excessively low
learning rate. The AdaGrad algorithm attempts to address this issue by adaptively changing the learning
rate for each parameter. The fundamental idea behind the AdaGrad method is to adjust the learning rate

of each parameter based on the sum of the squares of its prior gradients. This implies that the learning
rate will be higher for features with low frequency of occurrence and lower for those with high frequency
of occurrence. When dealing with sparse data, this method improves the model's performance. The
principle formula of AdaGrad is as follows, where Gt is the cumulative sum of the squares of the

parameter gradients, and ε is a small constant that prevents the denominator from being zero. Here, ⊙

refers to the "element-wise multiplication," also known as the Hadamard product, which is the
multiplication of corresponding elements in matrices.

 𝑥𝑡+1 = 𝑥𝑡 −
𝜂

√𝐺𝑡−𝜀
⊙𝛻𝐹(𝑥) (5)

 𝐺𝑡,𝑖𝑖 = 𝐺𝑡−1,𝑖𝑖 + (𝛻𝜃𝑖𝐽(𝜃𝑡,𝑖))
2 (6)

Diederik Kingma from OpenAI and Jimmy Ba from the University of Toronto were the ones who
first suggested Adam. Adam speeds up convergence by utilizing momentum and adjustable learning

rates. While AdaGrad and AdaDelta add second-order momentum (second-order moment estimate) on
top of SGD, SGD-M augments SGD with first-order momentum. Adam uses both first- and second-
order momentum at the same time. The principle formula of Adam is as follows:

 𝑥𝑡+1 = 𝑥𝑡 −
𝜂

√𝑣𝑡̂+𝜀
𝑚𝑡̂ (7)

 𝑚𝑡̂ =
𝑚𝑡

1−𝛽
1
𝑡 (8)

 𝑣𝑡̂ =
𝑣𝑡

1−𝛽
2
𝑡 (9)

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1− 𝛽1)𝛻𝐹(𝑥) (10)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1−𝛽2) [𝛻𝐹(𝑥)]
2 (11)

Here, mt is the update for the first moment estimate (similar to momentum), vt updates the second
moment estimate (uncentered variance), and β1 and β2 are decay rates used to adjust the importance of
historical information, typically with β1 close to 0.9 and β2 close to 0.999. Directly utilizing mt and vt,
which are initialized to 0, will result in estimations that are skewed toward 0, particularly in the early
stages. Therefore, use these two formulae for bias correction. Lastly, update the parameters using the

updated first and second moment estimates.
CNNs are good at learning features that are invariant to position. In order to better capture local

correlations, Kim used numerous kernels of varying sizes to extract important information from
sentences while using Convolutional Neural Networks (CNN) to text classification problems. This led
to the proposal of the TextCNN model. The core idea of TextCNN is to apply CNN to text classification
in order to extract text features. Based on convolutional neural networks, TextCNN is a text

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

228

categorization model with strong local feature extraction capabilities, a simple network topology, quick
training times, and great adaptability. The architecture of the TextCNN model is fundamentally similar
to that of the CNN model, consisting of an input layer, convolutional layers, pooling layers, and fully
connected layers. The input layer uses a pre-trained word vector for word embedding, resulting in a final

input vector dimension of: 300*128. At the same time, the emotions in Chinese text mainly appear in
the form of keywords, so the size of the convolutional kernels is set to 2, 3, and 4 to capture features of
the corresponding lengths.

2.2. Data and metrics
The dataset used in this experiment comes from three sources: Weibo comment sections, GitHub, and

Alibaba Cloud's open-source datasets. Using web crawlers, over 20,000 text data entries were collected
from Weibo comment sections. The initial goal of this experiment was to use only data from the Weibo
comment section. However, after text cleaning and annotation, it was found that over 80% of the text
data collected from the comment section belonged to the category of irrational thinking. Therefore, data
balancing was performed on the existing data using the open-source datasets from GitHub and Alibaba
Cloud. In the final dataset used for the experiment, the ratio of the three types of texts was
19983:19030:14401, totaling 53414 entries. Some data is shown in the Table 1. In this article, the model

task is a three-class classification, and the confusion matrix is given in Table 2. The main evaluation
metrics for the model designed in this paper are as follows:
⚫ Cross-entropy loss function. A loss function called the cross-entropy loss function is used to

evaluate how well classification models perform by comparing the actual probability distribution
of the labels with the model's projected probability distribution. The calculation process is as
follows:

 Loss = −∑ 𝑦𝑜,𝑖 𝑙𝑜𝑔(𝑃𝑜,𝑖)
𝑀
𝑖=1

,𝑀 = 3, 𝑜 = 0,1,2 (12)

⚫ Accuracy. One of the most logical performance measures for evaluating the overall accuracy of a
model's categorization choices is accuracy. It shows the percentage of accurately predicted samples
out of all the samples. The calculation process is as follows:

 Accuracy =
𝑇0+𝑇1+𝑇2

𝑇0+𝑇1+𝑇2+𝐹01+𝐹02+𝐹10+𝐹12+𝐹20+𝐹21
 (13)

⚫ Training duration. Accuracy is one of the most intuitive performance metrics, used to evaluate the

duration required for model training and indirectly reflecting the computational resources needed
for model training.

Table 1. Examples of partial experimental data.

Category Sample

0 Loving to play games, the graphics card is absolutely fantastic and more than sufficient.

1
According to this logic, all films could be explained as either a dream or a case of split
personality.

2 Ah, it’s too cruel for the parents.

Table 2. Confusion matrix for this task.

 Pc0 Pc1 Pc2

Ac0 𝑻𝟎 𝑭𝟏𝟎 𝑭𝟐𝟎

Ac1 𝑭𝟎𝟏 𝑻𝟏 𝑭𝟐𝟏

Ac2 𝑭𝟎𝟐 𝑭𝟏𝟐 𝑻𝟐

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

229

3. Results and discussion

3.1. Model performance

First of all, the global learning rate set in this article is 0.01. The graphs of train loss and train accuracy
are shown below. As can be seen from the Fig. 2 and Fig. 3, AdaGrad and Adam have the most stable
decrease in the loss function, while mini-batch SGD has the slowest decrease in the loss function,
indicating that the learning rate is too low. At the same time, the trend of train accuracy can also prove
this point. The overall trends of the validation loss and validation accuracy in Fig. 4 are similar to those
of the training data. At first, Adagrad was considered to be the optimal, because Adagrad has the best
accuracy and the training duration is not very long. However, a very important parameter was ignored -

Gt. Since Gt is the sum of squares of the gradient, Gt is a parameter that continues to increase, which
directly leads to the continuous decrease of Adagrade's learning rate. Therefore, through this
experimental verification, Adam performs optimally on this task, which also confirms why other models
such as transformer use other variant optimizers based on the Adam algorithm. The time for different
models is shown in Fig. 5.

Figure 2. Train accuracy of four different optimizers (Photo/Picture credit: Original).

Figure 3. Train accuracy of four different optimizers (Photo/Picture credit: Original).

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

230

Figure 4. Validatioin accuracy (left) and loss (right) of four different optimizers (Photo/Picture credit:

Original).

Figure 5. Train duration of four different optimizers (Photo/Picture credit: Original).

3.2. Comparison and explanation
For mini-batch SGD, it has the shortest training time, but its training accuracy is relatively low and the
loss fluctuates significantly. From the formula previously, it can be seen that mini-batch SGD updates
are based on only a small batch of data each time, resulting in a smaller computational load and therefore

the shortest running time. However, it is precisely because only a portion of the data is used each time
that the gradient estimates are unstable, resulting in significant fluctuations during parameter updates.

For momentum SGD, it has the second fastest training time, and its accuracy and loss function
changes are more gradual. In fact, momentum SGD takes into account the influence of previous
gradients. It builds upon mini-batch SGD by introducing "momentum" to smooth the gradient updates,
thereby overcoming the gradient noise caused by small batch data and making the direction of the
parameter update process more stable. At the same time, since momentum needs to be calculated, this

also increases the computational workload, making the duration of momentum SGD longer than that of
mini-batch SGD, but it still maintains a high level of efficiency.

For Adagrad, although it takes a longer time, the accuracy is quite high. Adagrad handles the
characteristics of sparse data by adjusting the learning rate for each parameter, which allows parameters
that are updated infrequently to have a larger learning rate, while parameters that are updated frequently
have a smaller learning rate. Gt is the accumulation of the square of the gradient of parameter x. If the
gradient of a parameter remains consistently large, the corresponding value in Gt will increase rapidly,
which will reduce the effective learning rate of that parameter. On the contrary, if the gradient of a

parameter is small or updates are infrequent, its corresponding Gt value increases slowly, which helps

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

231

maintain a higher effective learning rate, allowing these features to receive larger updates. However,
because Gt only accumulates and does not decrease, the learning rate continues to decay, causing it to
drop to a very small value too early in the later stages of the learning process, leading to premature
stopping of the learning. This can be verified by the trend of the loss function, which initially decreases

rapidly but then significantly slows down its rate of decline at a certain point. Correspondingly, since
there is a corresponding Gt for each parameter, the duration of Adagrad is relatively longer.

Adam combines concepts similar to momentum and Adagrad, providing a corresponding learning
rate for each parameter. From the formula in 2.1.4, mt is the update for the first moment estimate (similar
to momentum), vt updates the second moment estimate (uncentered variance), and β1 and β2 are decay
rates used to adjust the importance of historical information, typically with β1 close to 0.9 and β2 close
to 0.999. Since mt and vt are initialized to 0, directly using these values will lead to estimates biased
towards 0, especially in the initial phase. Therefore, use these two formulas for bias correction. Finally,

use the corrected first and second moment estimates to update the parameters. By introducing the
parameter mt, the Adam algorithm can utilize historical gradient information to accelerate the learning
process while reducing fluctuations. However, Adam's computation time is also the longest. First, Adam
needs to calculate the first moment and the second moment for each parameter. Secondly, since Adam
needs to simultaneously track the first and second moment estimates for each parameter, it requires more
memory to store these additional data structures. Memory access and management will also significantly
increase the additional time overhead, especially for the large-scale datasets are using.

3.3. For Limitations and Prospects
The goal of this article is to compare the substantial differences brought about by different optimizers
and optimization algorithms through a specific task, so the choice of model is not the primary objective.
Although the TextCNN model chosen for this experiment ultimately achieves an accuracy of 93%, there
is still considerable room for improvement. At the same time, the results of this experiment have raised

an interesting question: is the choice of model more important, or is the choice of optimization algorithm
more crucial. In previous experiments, the validation accuracy achieved by the Transformer using the
default optimizer was very close to the validation accuracy achieved by TextCNN using the Adam
optimizer in this experiment. In the future, this experiment may further compare optimization algorithms
using models such as Transformer and BERT.

4. Conclusion

By comparing relevant performance indicators and principal formulas, Adam is indeed the best
optimizer under the task of this research. The text data obtained through crawler technology is used as
a data set for subsequent training and verification after cleaning. At the same time, the same parameters
were used to conduct a horizontal comparison of the four optimizers, including performance indicators
such as accuracy, loss, and training time. It is concluded that the traditional SGD optimizer has a high
dependence on the initial learning rate setting, and the optimization process is more important. Adagrad

and Adam perform well under the conditions of this task, but through analysis principles, Adagrad has
greater limitations. In the future, this study will continue to compare the performance of optimizers to
explore optimization algorithms that can both meet accuracy requirements and save computing resources.

References

[1] Turing A M 1950 Mind Mind vol 59(236) pp 433-460

[2] Samuel A L 1959 Some studies in machine learning using the game of checkers IBM Journal of
research and development vol 3(3) pp 210-229

[3] Cover T and Hart P 1967 Nearest neighbor pattern classification IEEE transactions on information
theory vol 13(1) pp 21-27

[4] Quinlan J R 1986 Induction of decision trees Machine learning vol 1 pp 81-106
[5] LeCun Y and Bengio Y 1995 Convolutional networks for images speech and time series The

handbook of brain theory and neural networks vol 3361(10) p 1995

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

232

[6] Cortes C and Vapnik V 1995 Support vector machine Machine Learning vol 20(3) pp 273-297
[7] Breiman L 2001 Random forests Machine learning vol 45 pp 5-32
[8] Hinton G E, Osindero S and Teh Y W 2006 A fast learning algorithm for deep belief nets Neural

computation vol 18(7) pp 1527-1554

[9] Vaswani A 2017 Attention is all you need Advances in Neural Information Processing Systems
[10] Robbins H and Monro S 1951 A stochastic approximation method The annals of mathematical

statistics pp 400-407
[11] Qian N 1999 On the momentum term in gradient descent learning algorithms Neural networks

vol 12(1) pp 145-151

[12] Nesterov Y 2019 A method of solving a convex programming problem with convergence rate 𝑂

(1/𝑘2) Proceedings of the USSR Academy of Sciences vol 269 p 3
[13] Duchi J, Hazan E and Singer Y 2011 Adaptive subgradient methods for online learning and

stochastic optimization Journal of machine learning research vol 12 p 7
[14] Kingma D P 2014 Adam: A method for stochastic optimization arXiv preprint arXiv:14126980
[15] Ruder S 2016 An overview of gradient descent optimization algorithms arXiv preprint

arXiv:160904747

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20241146

233

