

Processing and Comparison of GBoost, XGBoost, and

Random Forest in Titanic Survival Prediction

Shiyuan Huang

School of Information Science and Technology, Fudan University, Shanghai, China

23307130435@fudan.edu.cn

Abstract. Contemporarily, the machine learning has evolved from its early concepts to a

sophisticated field consisting of advanced algorithms and diverse applications. Tree-based

classification models have become powerful tools for complex predictive challenges. In this

study, the effectiveness of tree-based classification models, such as Random Forest, XGBoost,

and Gradient Boosting, is examined on the Titanic survival prediction challenge, which

originates from the 1912 Titanic disaster. Passengers’ survival and death were influenced by

various factors in this disaster. By using features such as gender, age, and class, and the survival

outcome as the target variable, a binary classification model is developed to predict each

passenger's survival status. The study includes data preprocessing, feature selection based on a

foundational model, and model training. After the construction, hyper-parameters tuning, and

cross-validation of three classifiers, this research compares and analyzes the performance scores

to evaluate the characteristics of these tree-based learning methods, aiming to provide a reference

for the similar applications.

Keywords: Gradient boosting, XGBoost, random forest, survival prediction model.

1. Introduction

The advancement of machine learning and deep learning has resulted in a significant transformation of

the artificial intelligence sector in recent decades. The concept of algorithms with the ability to learn

from and forecast data was first explored by trailblazers like Alan Turing and Arthur Samuel in the

middle of the 20th century, which is when machine learning first emerged. Turing's work established

the idea that machines could behave intelligently, and Samuel's checkers-playing program is frequently

recognized as one of the first examples of machine learning in action [1, 2]. In the 1980s and 1990s, the

machine learning gained traction with the introduction of various algorithms, such as decision trees [3]

and support vector machines [4]. The development of these algorithms allowed researchers to tackle

problems of higher complexity, leading to advances in natural language processing, image recognition,

and speech understanding. Nevertheless, it was only after the advent of deep learning in the 2000s that

machine learning reached its true potential. With the introduction of deep neural networks, based on

increased computing capability and the availability of big data, significant progress was achieved in

various fields [5, 6].

Deep learning succeeded in challenging tasks, such as image classification, where models including

AlexNet achieved state-of-the-art performance on benchmarks like ImageNet [7]. Then, it continued to

rise, with frameworks represented by CNNs and RNNs becoming classic tools for AI researchers [8-10],

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

175

promoting a series of applications from healthcare to robotics. In parallel to developments in deep

learning, tree-based classification models have been advancing, which have proven to be effective in

various predictive tasks. Among them, Gradient Boosting Machines, introduced by Friedman [10], are

an ensemble learning method which develops the model in a progressive mode, optimizing for a loss

function at each step. It is practical for both regression and classification challenges due to its capability

to combine weak learners into a powerful predictor. Extreme Gradient Boosting is an optimization of

GBoost which combines regularization techniques to prevent over-fitting and improve model

generalization [11]. It performs remarkably in handling large datasets and exhibits versatility across

various applications. Random Forests, on the other hand, is an integrated technique that structures

several decision trees for parallel training and takes the average of predictions as the output [12]. The

randomness introduced in the selection of features and samples helps mitigate over-fitting, making

Random Forests a robust choice for many classification tasks. Recent studies have highlighted the

strengths and weaknesses of these tree-based models, as well as their comparative performance in

different scenarios. For instance, Liu et al. demonstrated that XGBoost outperformed traditional models

in predicting credit risk [13], while Zhang et al. conducted a comprehensive review of ensemble learning

methods, highlighting the efficiency of model selection and hyper-parameter tuning in acquiring optimal

performance [14].

Aiming to study the performance of tree-based classification methods in prediction tasks, this paper

selects Gradient Boosting, XGBoost, and Random Forest to conduct the well-known Titanic survival

prediction. The background of this prediction challenge is the Titanic disaster that occurred in 1912.

While some survivors benefited from luck, the survival and death of individuals were not entirely

random. By selecting factors such as gender, age, and class as the features, and the survival outcome as

the target variable, this paper will develop a typical binary classification model of machine learning to

perform prediction of the passengers’ survival status. This research starts from data preprocessing, then

perform feature importance analysis and feature selection based on a foundation model. After a series

of model constructing and hyper-parameters tuning, this paper compares and analyses the test results to

examine the characteristics of these tree-based learning methods.

2. Data and method

2.1. Data processing

The Titanic data set includes personal information and survival statuses of certain passengers and crew

members involved in the 1912 sinking of the Titanic. The historical data is divided into training and test

sets, allowing the development of an appropriate model in the training and thereby the prediction of

survival statuses in the test. The feature descriptions of the data set are as follows:

• PassengerId: Passenger’s identity

• Survived: Survival status

• Pclass: Passenger’s ticket class

• Name: Name

• Sex: Gender

• Age: Age in years

• SibSp: Number of siblings or spouses aboard

• Parch: Number of parents or children aboard

• Fare: Fare

• Ticket: Ticket number

• Cabin: Cabin number

• Embarked: Embarkation port.

Since the model ultimately needs to offer predictions for the test samples, both the training and test

data set must be preprocessed, including operations on missing values and feature processing. First, the

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

176

two sets are combined as a single list in convenience of the application of the same operations to both

datasets. The “df.isnull()” function is applied for missing values checking . The output results can be

organized as shown in Table 1. From the output results, it can be observed that both the training and test

set include missing data. Among the training data, missing data exists in Age, Cabin, and Embarked,

while in the test set, missing values are found in Age, Cabin, and Fare.

In feature engineering, the key lies in generating new distinguishable variables and modify certain

variables for better utility. Subsequently, the missing values should be imputed appropriately on the

basis of processed data. Table 2 specifically illustrates the processing operations for each feature. The

general operations are as follows:

• Extracting and classifying the passenger titles from Name.

• Generating the Family variable from Parch and SibSp.

• Handling missing values separately.

• Dummy encoding for Pclass, Title, Sex, Family, Ticket, Cabin, and Embarked.

Table 1. Number of missing values.

Feature Train set missing count Test set missing count

Name 0 0

Pclass 0 0

Sex 0 0

Age 177 86

Ticket 0 0

Fare 0 1

Cabin 687 327

Embarked 2 0

Parch 0 0

SibSp 0 0

Table 2. Processing method for features.

Feature Total missing Filling missing data with Dummy encoding

Pclass 0 ✔

Title(Name) 0 ✔

Sex 0 ✔

Age 263
Median of samples with the same

Sex, Pclass and Title

Family

(Parch & SibSp)
0 ✔

Ticket 0 ✔

Fare 1 Mean

Cabin 1014 U(Unknown) ✔

Embarked 2 Mode ✔

The samples from the training and the test set are combined for processing. However, the calculation

of replacement values only took the training set data into account in order to avoid any leakage of test

information. The titles are the most meaningful information within Name. Through extraction and

simplification, all titles are classified into 6 categories: Mr, Mrs, Miss, Officer, Master and the Royals.

The processing of the Family variable is based upon a realistic assumption: larger families are more

likely to be grouped together, which means higher possibilities to get survived than individual travelers.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

177

Therefore, combining the Parch and SibSp with “combined[‘FamilySize’] = combined[‘Parch’] +

combined[‘SibSp’] + 1”, it is convenient to obtain the numbers of companions and classify the statuses

into “Singleton”, “Small Family” and “Large Family”. For Fare and Embarked values, the numbers of

missing values are quite small. Therefore, it is suitable to simply replace 1 missing Fare value by the

mean and 2 missing Embarked value by the most frequent one in the training set.

However, there are large numbers of missing Age and Cabin values which might hold patterns of

survival. The values used as substitutes must be as accurate as possible. The processing of the Age

variables first categorize the data based on Sex, Pclass and Title and then calculate the median value for

each category of samples separately. For example, among female passengers in the first class (Pclass=1),

the median age of those with the title “Miss” is 30.0, while the average age of those with the title

"Officer" is 49.0. To prevent sample leakage from the test set, Ages in both the training set and the test

set are filled with values calculated over the train set.

In order to facilitate machine learning training, the categorical variables, including Pclass, Title, Sex,

Family, Ticket, Cabin, and Embarked, are converted into numeric formats. Taking Pclass as an example,

if a sample has Pclass as 2, it would be encoded as: Pclass_1=0; Pclass_2=1; Pclass_3=0. Trough the

above processing, the original variables are replaced by numeric formats. Before building the models,

the combined list should be re-segmented into original sets of training and test, with the test set

comprising approximately 32% of the total data.

2.2. Methods

Decision trees, also known as regression trees, is a widely used fundamental learner that classify and

regress data through a structure similar to trees, where each internal node corresponds to a test over a

particular attribute, branch to the testing outcome, and leaf to the final result of class or value [15]. The

superiority of decision trees lies in the ease of interpretation and visualization, the capability to tackle

both categorical and numerical data, and the minimal requirement for data preprocessing. Gradient

Boosting (GBoost) is an ensemble algorithm that performs optimization by consecutively introducing

weak learners, typically decision trees [10]. The core idea is to improve subsequent models on the basis

of the errors of the previous ones, thereby enhancing overall performance. XGBoost is an optimized

implementation of GBoost, with superior computing performance and regularization capabilities [11].

XGBoost accelerates model training through incorporating second-order derivative information and

parallel computation. It also performs remarkably in handling missing values and preventing over-fitting.

Random Forest is an ensemble algorithm on the basis of the Bagging (Bootstrap Aggregating) principle

[12]. It builds several decision trees for parallel training and averages the predictions to promote the

model so that the over-fitting problem of a single decision tree does not affect the final prediction results.

Different from GBoost and XGBoost, Random Forest reduces variance by randomly sampling both data

and features, therefore suitable for high-dimensional data and nonlinear relationships, which is

advantageous for the Titanic data set. In addition, Random Forest can evaluate the degree of relevance

of features by calculating features’ effect on the splits in the trees, providing guidance for feature

selection.

While all three methods are representatives of ensemble learning, they show differences in model

construction and optimization strategies. GBoost and XGBoost primarily optimize through an sequential

addition model, whereas Random Forest reaches better performance by aggregating predictions from

multiple models. In the context of Titanic survival prediction, Random Forest might achieve higher

stability and robustness through ensemble model averaging and is expected to obtain most outstanding

performance among these three methods. The comparisons are shown in Table 3.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

178

Table 3. Characteristic comparison of GBoost, XGBoost, and Random Forest.

Characteristic GBoost XGBoost Random Forest

Algorithm

type
Boosting Boosting Bagging

Training

process

Stepwise optimization,

focusing on the errors of

the previous step

Stepwise optimization with

regularization to reduce

over-fitting

Parallel training of multiple

trees, with each tree trained

independently

Handling

missing values

Requiring manual

handling
Automatically handling Requiring manual handling

Computing

speed

Slower due to stepwise

training

Generally faster due to

parallel computing

Faster, as tree training is

independent

Regularization None L1 and L2 regularization None

3. Results and discussion

3.1. Feature importance analysis

Once feature engineering is completed, the next step is reducing dimensionality by selecting appropriate

features that encapsulate essential information. Feature selection offers several benefits including

reduction of redundancy, increasing training efficiency, and over-fitting mitigation [16, 17]. Tree-based

estimators can be applied to calculate feature importance, thereby informing the elimination of irrelevant

features. Initialize and train a basic Random Forest classifier with the parameter “n_estimators” as 50

and “max_features” as ‘sqrt’, and visualize the significance of each variable in the model. As is

illustrated in Fig. 1, there is a remarkable relationship with Age, Fare, Sex, and Title (Title_Mr,

Title_Miss, and Title_Mrs). This demonstrates convincingly that the age, gender, as well as wealth plays

important roles in passengers’ survival probability in the Titanic disaster. The “SelectFromModel()”

function can be utilized to select features. The compute_score() function is applied for cross-validation,

calculating the model’s accuracy. The compute_score() function uses 5-fold stratified cross-validation

(cv=5) to evaluate model performance. After initializing the basic Gradient Boosting model, Grid Search

is employed for hyper-parameter tuning of the Gradient Boosting classifier. The parameter grid is

defined with the following values: "max_depth": 4, 6, and 8; "n_estimators": 50 and 100;

"min_samples_split": 2 and 3; "min_samples_leaf": 1 and 3; "max_features": ‘log2’, ‘sqrt’, and ‘auto’;

and "max_leaf_nodes": None and 20.

Cross-validation was employed for performance evaluation. The “GridSearchCV()” function

facilitated the search for the optimal hyper-parameters by assessing the model’s accuracy as the appraisal

index. The optimum model and its corresponding parameters were identified upon applying grid

optimization to the training data. The output results include the best score and the optimal hyper-

parameter configuration. Finally, predictions were implemented over the test set, and the results were

saved to a CSV file for the later analysis. The accuracy of the initial model and the tuned model over

the training set are 0.830 and 0.836 respectively. When validated upon the test set, the performance

scores are separately 0.763 and 0.775.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

179

Figure 1. Diagram illustrating feature importance in a basic Random Forest model (with features of

minimal importance omitted) (Photo/Picture credit: Original).

XGBoost has multiple hyper-parameters, including the learning rate, the number of estimators, the

maximum depth, the regularization parameters, and the minimum child weight, which are substantially

related to the classifier’s performance [18]. With the introduction of regularization, the parameter tuning

is much more demanding. In this paper, there are 10 parameters selected. The tuned parameters, although

not necessarily the same in multiple experiments, can achieve a relatively stable accuracy. The training

accuracy of the initial and tuned model are 0.811 and 0.839 respectively. Evaluated on the test set, the

performance scores are separately 0.708 and 0.775.

Utilizing functions from the sci-kit learn library, a basic Random Forest model was constructed with

default parameters “n_estimators” as 100 and “max_features” as ‘sqrt’. Each estimator in the Random

Forest is not pruned and randomly selects a certain number of features and samples to build the decision

tree model. This means that each decision tree does not use all the samples and features from the training

set. Therefore, the score output in the classifier represents the score of the samples that were not used to

build the model for any decision tree. The average accuracy obtained in this way can be considered as

the prediction accuracy of the Random Forest classifier. Grid Search is employed for hyper-parameter

tuning. A parameter grid was defined with the following values: "max_depth": 4, 6, and 8;

"n_estimators": 50 and 10; "min_samples_split": 2, 3, and 10; "min_samples_leaf": 1, 3, and 10;

"max_features": ‘log2’, ‘sqrt’, and ‘auto’; and "bootstrap": True and False. The training accuracy of the

initial and tuned model are 0.815 and 0.84 respectively. Evaluated on the test set, the performance scores

are separately 0.725 and 0.785.

3.2. Performance analysis

The output results obtained above can be consolidated in the Table 4. The Gradient Boosting classifier

gains the highest score when initialized and lowest after hyper-parameter tuning. By comparing the two

groups of data before and after optimization, it is apparent that the optimization rarely promotes the

GBoost model. Although it is not the most outstanding model, the XGBoost method demonstrates a

remarkable advantage in its low requirements for parameter tuning. The XGBoost and Random Forest

algorithm shows similarity in data characteristics, in which hyper-parameters tuning significantly

improves their performances of prediction. After the optimization separately, the test score enhances

remarkably and the over-fitting is mitigated for both of the models. In addition, multiple experiments

can generally achieve stable accuracy of prediction, although with obvious fluctuation of the optimal

parameter. The Random Forest classifier performs slightly better than the other two methods, which

indicates the superiority of multiple trees averaging. In datasets of higher complexity, the Random Forest

might demonstrate greater advantages.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

180

Table 4. Performance comparison of GBoost, XGBoost, and Random Forest.

 initial model tuned model

 training score test score training score test score

gboost 0.83 0.763 0.836 0.766

xgb 0.811 0.708 0.839 0.775

rf 0.815 0.725 0.84 0.785

3.3. Limitations

The Titanic data set is not particular complicated. Although there are various features, it is not difficult

to extract effective information from these elements. Therefore, the data processing can be implemented

definitely and sufficiently. The advantages of XGBoost in handling missing values and Random Forest

in tackling data of dramatic complexity and obvious noise are not demonstrated effectively in this paper.

4. Conclusion

To sum up, this study predicts the survival outcomes of Titanic passengers by constructing a survival

prediction model on the basis of several classic tree-based classification algorithms. Initially, data

preprocessing is conducted, and the data samples are decoupled into training and test sets. Subsequently,

GBoost, XGBoost, and Random Forest models are employed to analyze the data set and perform

predictions. By measuring and comparing the accuracy of training and test before and after optimization,

this paper comes to conclusion that GBoost is a convenient method with low requirements for parameter

tuning. The XGBoost, comparing with GBoost, performs slightly better with the introduction of

regularization but is correspondingly much more demanding for parameter tuning. The Random Forest

method achieves vaguely superior results than the other two algorithms. After hyper-parameter tuning

respectively, the three methods all reach a presentable accuracy and do not show serious over-fitting.

Despite limitations in datasets, the results of this paper can to some extent verify the characteristics

of the GBoost, XGBoost, and Random Forest method as well as indicate the critical factors in Titanic

survival analysis. Features of greatest significance include Age, Fare, Sex, and Title, showing the

priority in the rescue of Titanic disaster. The prediction model can be applied to effectively predict

human survival in similar disasters based on diverse individual information, thereby offering guidance

for emergency measure.

References

[1] Turing A 1950 Computing machinery and intelligence Mind vol 59(236) pp 433-460

[2] Samuel A L 1959 Some studies in machine learning using the game of checkers IBM Journal of

Research and Development vol 3(3) pp 210-229

[3] Breiman L, Friedman J H, Olshen R A and Stone C J 1986 Classification and regression trees

Wadsworth and Brooks/Cole

[4] Cortes C and Vapnik V 1995 Support-vector networks Machine Learning vol 20(3) pp 273-297

[5] Hinton G E, Osindero S and Teh Y W 2006 A fast learning algorithm for deep belief nets Neural

Computation vol 18(7) pp 1527-1554

[6] LeCun Y, Bengio Y and Haffner P 2015 Gradient-based learning applied to document recognition

Proceedings of the IEEE vol 86(11) pp 2278-2324

[7] Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet classification with deep convolutional

neural networks In Advances in neural information processing systems vol 25 pp 1097-1105

[8] Goodfellow I, Bengio Y and Courville A 2016 Deep learning MIT Press

[9] Vaswani A, Shankar S, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł and Polosukhin I

2017 Attention is all you need In Advances in neural information processing systems p 30

[10] Friedman J H 2001 Greedy function approximation: A gradient boosting machine Annals of

Statistics vol 29(5) pp 1189-1232

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

181

[11] Chen T and Guestrin C 2016 XGBoost: A scalable tree boosting system In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining pp

785-794

[12] Breiman L 2001 Random forests Machine Learning vol 45(1) pp 5-32

[13] Liu Y, Wang Y and Yang Y 2018 Credit risk assessment using XGBoost model Applied Sciences

vol 8(8) pp 1362

[14] Zhang H and Singer B 2020 Ensemble methods in data mining: Improving accuracy through

combining predictions Springer

[15] Freund Y Boosting a weak learning algorithm by majority Information and Computation vol

121(2) pp 256-285

[16] Sun Y and Li J 2020 Feature selection based on mutual information: A review ACM Computing

Surveys vol 52(4) pp 1-35

[17] Huang J and Wang H 2020 Feature selection: A data perspective Journal of Machine Learning

Research vol 21 pp 1-42

[18] Guo J, Yang L, Bie R, Yu J, Gao Y, Shen Y and Kos A 2019 An XGBoost-based physical fitness

evaluation model using advanced feature selection and Bayesian hyper-parameter

optimization for wearable running monitoring Computer Networks vol 151 pp 166-180

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/102/20241195

182

