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Abstract. Contemporarily, the machine learning has evolved from its early concepts to a 

sophisticated field consisting of advanced algorithms and diverse applications. Tree-based 

classification models have become powerful tools for complex predictive challenges. In this 

study, the effectiveness of tree-based classification models, such as Random Forest, XGBoost, 

and Gradient Boosting, is examined on the Titanic survival prediction challenge, which 

originates from the 1912 Titanic disaster. Passengers’ survival and death were influenced by 

various factors in this disaster. By using features such as gender, age, and class, and the survival 

outcome as the target variable, a binary classification model is developed to predict each 

passenger's survival status. The study includes data preprocessing, feature selection based on a 

foundational model, and model training. After the construction, hyper-parameters tuning, and 

cross-validation of three classifiers, this research compares and analyzes the performance scores 

to evaluate the characteristics of these tree-based learning methods, aiming to provide a reference 

for the similar applications. 
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1.  Introduction 

The advancement of machine learning and deep learning has resulted in a significant transformation of 

the artificial intelligence sector in recent decades. The concept of algorithms with the ability to learn 

from and forecast data was first explored by trailblazers like Alan Turing and Arthur Samuel in the 

middle of the 20th century, which is when machine learning first emerged. Turing's work established 

the idea that machines could behave intelligently, and Samuel's checkers-playing program is frequently 

recognized as one of the first examples of machine learning in action [1, 2]. In the 1980s and 1990s, the 

machine learning gained traction with the introduction of various algorithms, such as decision trees [3] 

and support vector machines [4]. The development of these algorithms allowed researchers to tackle 

problems of higher complexity, leading to advances in natural language processing, image recognition, 

and speech understanding. Nevertheless, it was only after the advent of deep learning in the 2000s that 

machine learning reached its true potential. With the introduction of deep neural networks, based on 

increased computing capability and the availability of big data, significant progress was achieved in 

various fields [5, 6]. 

Deep learning succeeded in challenging tasks, such as image classification, where models including 

AlexNet achieved state-of-the-art performance on benchmarks like ImageNet [7]. Then, it continued to 

rise, with frameworks represented by CNNs and RNNs becoming classic tools for AI researchers [8-10], 
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promoting a series of applications from healthcare to robotics. In parallel to developments in deep 

learning, tree-based classification models have been advancing, which have proven to be effective in 

various predictive tasks. Among them, Gradient Boosting Machines, introduced by Friedman [10], are 

an ensemble learning method which develops the model in a progressive mode, optimizing for a loss 

function at each step. It is practical for both regression and classification challenges due to its capability 

to combine weak learners into a powerful predictor. Extreme Gradient Boosting is an optimization of 

GBoost which combines regularization techniques to prevent over-fitting and improve model 

generalization [11]. It performs remarkably in handling large datasets and exhibits versatility across 

various applications. Random Forests, on the other hand, is an integrated technique that structures 

several decision trees for parallel training and takes the average of predictions as the output [12]. The 

randomness introduced in the selection of features and samples helps mitigate over-fitting, making 

Random Forests a robust choice for many classification tasks. Recent studies have highlighted the 

strengths and weaknesses of these tree-based models, as well as their comparative performance in 

different scenarios. For instance, Liu et al. demonstrated that XGBoost outperformed traditional models 

in predicting credit risk [13], while Zhang et al. conducted a comprehensive review of ensemble learning 

methods, highlighting the efficiency of model selection and hyper-parameter tuning in acquiring optimal 

performance [14]. 

Aiming to study the performance of tree-based classification methods in prediction tasks, this paper 

selects Gradient Boosting, XGBoost, and Random Forest to conduct the well-known Titanic survival 

prediction. The background of this prediction challenge is the Titanic disaster that occurred in 1912. 

While some survivors benefited from luck, the survival and death of individuals were not entirely 

random. By selecting factors such as gender, age, and class as the features, and the survival outcome as 

the target variable, this paper will develop a typical binary classification model of machine learning to 

perform prediction of the passengers’ survival status. This research starts from data preprocessing, then 

perform feature importance analysis and feature selection based on a foundation model. After a series 

of model constructing and hyper-parameters tuning, this paper compares and analyses the test results to 

examine the characteristics of these tree-based learning methods. 

2.  Data and method 

2.1.  Data processing 

The Titanic data set includes personal information and survival statuses of certain passengers and crew 

members involved in the 1912 sinking of the Titanic. The historical data is divided into training and test 

sets, allowing the development of an appropriate model in the training and thereby the prediction of 

survival statuses in the test. The feature descriptions of the data set are as follows:   

• PassengerId: Passenger’s identity 

• Survived: Survival status 

• Pclass: Passenger’s ticket class 

• Name: Name 

• Sex: Gender 

• Age: Age in years 

• SibSp: Number of siblings or spouses aboard 

• Parch: Number of parents or children aboard 

• Fare: Fare 

• Ticket: Ticket number 

• Cabin: Cabin number 

• Embarked: Embarkation port.   

Since the model ultimately needs to offer predictions for the test samples, both the training and test 

data set must be preprocessed, including operations on missing values and feature processing. First, the 
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two sets are combined as a single list in convenience of the application of the same operations to both 

datasets. The “df.isnull()” function is applied for missing values checking .  The output results can be 

organized as shown in Table 1. From the output results, it can be observed that both the training and test 

set include missing data. Among the training data, missing data exists in Age, Cabin, and Embarked, 

while in the test set, missing values are found in Age, Cabin, and Fare. 

In feature engineering, the key lies in generating new distinguishable variables and modify certain 

variables for better utility. Subsequently, the missing values should be imputed appropriately on the 

basis of processed data. Table 2 specifically illustrates the processing operations for each feature. The 

general operations are as follows: 

• Extracting and classifying the passenger titles from Name. 

• Generating the Family variable from Parch and SibSp. 

• Handling missing values separately. 

• Dummy encoding for Pclass, Title, Sex, Family, Ticket, Cabin, and Embarked. 

Table 1. Number of missing values. 

Feature Train set missing count Test set missing count 

Name 0 0 

Pclass 0 0 

Sex 0 0 

Age 177 86 

Ticket 0 0 

Fare 0 1 

Cabin 687 327 

Embarked 2 0 

Parch 0 0 

SibSp 0 0 

Table 2. Processing method for features. 

Feature Total missing Filling missing data with Dummy encoding 

Pclass 0  ✔ 

Title(Name) 0  ✔ 

Sex 0  ✔ 

Age 263 
Median of samples with the same 

Sex, Pclass and Title 
 

Family 

(Parch & SibSp) 
0  ✔ 

Ticket 0  ✔ 

Fare 1 Mean  

Cabin 1014 U(Unknown) ✔ 

Embarked 2 Mode ✔ 

 

The samples from the training and the test set are combined for processing. However, the calculation 

of replacement values only took the training set data into account in order to avoid any leakage of test 

information. The titles are the most meaningful information within Name. Through extraction and 

simplification, all titles are classified into 6 categories: Mr, Mrs, Miss, Officer, Master and the Royals. 

The processing of the Family variable is based upon a realistic assumption: larger families are more 

likely to be grouped together, which means higher possibilities to get survived than individual travelers. 
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Therefore, combining the Parch and SibSp with “combined[‘FamilySize’] = combined[‘Parch’] + 

combined[‘SibSp’] + 1”, it is convenient to obtain the numbers of companions and classify the statuses 

into “Singleton”, “Small Family” and “Large Family”. For Fare and Embarked values, the numbers of 

missing values are quite small. Therefore, it is suitable to simply replace 1 missing Fare value by the 

mean and 2 missing Embarked value by the most frequent one in the training set. 

However, there are large numbers of missing Age and Cabin values which might hold patterns of 

survival. The values used as substitutes must be as accurate as possible. The processing of the Age 

variables first categorize the data based on Sex, Pclass and Title and then calculate the median value for 

each category of samples separately. For example, among female passengers in the first class (Pclass=1), 

the median age of those with the title “Miss” is 30.0, while the average age of those with the title 

"Officer" is 49.0. To prevent sample leakage from the test set, Ages in both the training set and the test 

set are filled with values calculated over the train set.   

In order to facilitate machine learning training, the categorical variables, including Pclass, Title, Sex, 

Family, Ticket, Cabin, and Embarked, are converted into numeric formats. Taking Pclass as an example, 

if a sample has Pclass as 2, it would be encoded as: Pclass_1=0; Pclass_2=1; Pclass_3=0. Trough the 

above processing, the original variables are replaced by numeric formats. Before building the models, 

the combined list should be re-segmented into original sets of training and test, with the test set 

comprising approximately 32% of the total data. 

2.2.  Methods 

Decision trees, also known as regression trees, is a widely used fundamental learner that classify and 

regress data through a structure similar to trees, where each internal node corresponds to a test over a 

particular attribute, branch to the testing outcome, and leaf to the final result of class or value [15]. The 

superiority of decision trees lies in the ease of interpretation and visualization, the capability to tackle 

both categorical and numerical data, and the minimal requirement for data preprocessing. Gradient 

Boosting (GBoost) is an ensemble algorithm that performs optimization by consecutively introducing 

weak learners, typically decision trees [10]. The core idea is to improve subsequent models on the basis 

of the errors of the previous ones, thereby enhancing overall performance. XGBoost is an optimized 

implementation of GBoost, with superior computing performance and regularization capabilities [11]. 

XGBoost accelerates model training through incorporating second-order derivative information and 

parallel computation. It also performs remarkably in handling missing values and preventing over-fitting. 

Random Forest is an ensemble algorithm on the basis of the Bagging (Bootstrap Aggregating) principle 

[12]. It builds several decision trees for parallel training and averages the predictions to promote the 

model so that the over-fitting problem of a single decision tree does not affect the final prediction results. 

Different from GBoost and XGBoost, Random Forest reduces variance by randomly sampling both data 

and features, therefore suitable for high-dimensional data and nonlinear relationships, which is 

advantageous for the Titanic data set. In addition, Random Forest can evaluate the degree of relevance 

of features by calculating features’ effect on the splits in the trees, providing guidance for feature 

selection. 

While all three methods are representatives of ensemble learning, they show differences in model 

construction and optimization strategies. GBoost and XGBoost primarily optimize through an sequential 

addition model, whereas Random Forest reaches better performance by aggregating predictions from 

multiple models. In the context of Titanic survival prediction, Random Forest might achieve higher 

stability and robustness through ensemble model averaging and is expected to obtain most outstanding 

performance among these three methods. The comparisons are shown in Table 3. 
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Table 3. Characteristic comparison of GBoost, XGBoost, and Random Forest. 

Characteristic GBoost XGBoost Random Forest 

Algorithm 

type 
Boosting Boosting Bagging 

Training 

process 

Stepwise optimization, 

focusing on the errors of 

the previous step 

Stepwise optimization with 

regularization to reduce 

over-fitting 

Parallel training of multiple 

trees, with each tree trained 

independently 

Handling 

missing values 

Requiring manual 

handling 
Automatically handling Requiring manual handling 

Computing 

speed 

Slower due to stepwise 

training 

Generally faster due to 

parallel computing 

Faster, as tree training is 

independent 

Regularization None L1 and L2 regularization None 

3.  Results and discussion 

3.1.  Feature importance analysis 

Once feature engineering is completed, the next step is reducing dimensionality by selecting appropriate 

features that encapsulate essential information. Feature selection offers several benefits including 

reduction of redundancy, increasing training efficiency, and over-fitting mitigation [16, 17]. Tree-based 

estimators can be applied to calculate feature importance, thereby informing the elimination of irrelevant 

features. Initialize and train a basic Random Forest classifier with the parameter “n_estimators” as 50 

and “max_features” as ‘sqrt’, and visualize the significance of each variable in the model. As is 

illustrated in Fig. 1, there is a remarkable relationship with Age, Fare, Sex, and Title (Title_Mr, 

Title_Miss, and Title_Mrs). This demonstrates convincingly that the age, gender, as well as wealth plays 

important roles in passengers’ survival probability in the Titanic disaster. The “SelectFromModel()” 

function can be utilized to select features. The compute_score() function is applied for cross-validation, 

calculating the model’s accuracy. The compute_score() function uses 5-fold stratified cross-validation 

(cv=5) to evaluate model performance. After initializing the basic Gradient Boosting model, Grid Search 

is employed for hyper-parameter tuning of the Gradient Boosting classifier. The parameter grid is 

defined with the following values: "max_depth": 4, 6, and 8; "n_estimators": 50 and 100; 

"min_samples_split": 2 and 3; "min_samples_leaf": 1 and 3; "max_features": ‘log2’, ‘sqrt’, and ‘auto’; 

and "max_leaf_nodes": None and 20. 

Cross-validation was employed for performance evaluation. The “GridSearchCV()” function 

facilitated the search for the optimal hyper-parameters by assessing the model’s accuracy as the appraisal 

index. The optimum model and its corresponding parameters were identified upon applying grid 

optimization to the training data. The output results include the best score and the optimal hyper-

parameter configuration. Finally, predictions were implemented over the test set, and the results were 

saved to a CSV file for the later analysis. The accuracy of the initial model and the tuned model over 

the training set are 0.830 and 0.836 respectively. When validated upon the test set, the performance 

scores are separately 0.763 and 0.775. 
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Figure 1. Diagram illustrating feature importance in a basic Random Forest model (with features of 

minimal importance omitted) (Photo/Picture credit: Original). 

XGBoost has multiple hyper-parameters, including the learning rate, the number of estimators, the 

maximum depth, the regularization parameters, and the minimum child weight, which are substantially 

related to the classifier’s performance [18]. With the introduction of regularization, the parameter tuning 

is much more demanding. In this paper, there are 10 parameters selected. The tuned parameters, although 

not necessarily the same in multiple experiments, can achieve a relatively stable accuracy. The training 

accuracy of the initial and tuned model are 0.811 and 0.839 respectively. Evaluated on the test set, the 

performance scores are separately 0.708 and 0.775. 

Utilizing functions from the sci-kit learn library, a basic Random Forest model was constructed with 

default parameters “n_estimators” as 100 and “max_features” as ‘sqrt’. Each estimator in the Random 

Forest is not pruned and randomly selects a certain number of features and samples to build the decision 

tree model. This means that each decision tree does not use all the samples and features from the training 

set. Therefore, the score output in the classifier represents the score of the samples that were not used to 

build the model for any decision tree. The average accuracy obtained in this way can be considered as 

the prediction accuracy of the Random Forest classifier. Grid Search is employed for hyper-parameter 

tuning. A parameter grid was defined with the following values: "max_depth": 4, 6, and 8; 

"n_estimators": 50 and 10; "min_samples_split": 2, 3, and 10; "min_samples_leaf": 1, 3, and 10; 

"max_features": ‘log2’, ‘sqrt’, and ‘auto’; and "bootstrap": True and False. The training accuracy of the 

initial and tuned model are 0.815 and 0.84 respectively. Evaluated on the test set, the performance scores 

are separately 0.725 and 0.785. 

3.2.  Performance analysis 

The output results obtained above can be consolidated in the Table 4. The Gradient Boosting classifier 

gains the highest score when initialized and lowest after hyper-parameter tuning. By comparing the two 

groups of data before and after optimization, it is apparent that the optimization rarely promotes the 

GBoost model. Although it is not the most outstanding model, the XGBoost method demonstrates a 

remarkable advantage in its low requirements for parameter tuning. The XGBoost and Random Forest 

algorithm shows similarity in data characteristics, in which hyper-parameters tuning significantly 

improves their performances of prediction. After the optimization separately, the test score enhances 

remarkably and the over-fitting is mitigated for both of the models. In addition, multiple experiments 

can generally achieve stable accuracy of prediction, although with obvious fluctuation of the optimal 

parameter. The Random Forest classifier performs slightly better than the other two methods, which 

indicates the superiority of multiple trees averaging. In datasets of higher complexity, the Random Forest 

might demonstrate greater advantages. 
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Table 4. Performance comparison of GBoost, XGBoost, and Random Forest. 

 initial model tuned model 

 training score test score training score test score 

gboost 0.83 0.763 0.836 0.766 

xgb 0.811 0.708 0.839 0.775 

rf 0.815 0.725 0.84 0.785 

3.3.  Limitations 

The Titanic data set is not particular complicated. Although there are various features, it is not difficult 

to extract effective information from these elements. Therefore, the data processing can be implemented 

definitely and sufficiently. The advantages of XGBoost in handling missing values and Random Forest 

in tackling data of dramatic complexity and obvious noise are not demonstrated effectively in this paper. 

4.  Conclusion 

To sum up, this study predicts the survival outcomes of Titanic passengers by constructing a survival 

prediction model on the basis of several classic tree-based classification algorithms. Initially, data 

preprocessing is conducted, and the data samples are decoupled into training and test sets. Subsequently, 

GBoost, XGBoost, and Random Forest models are employed to analyze the data set and perform 

predictions. By measuring and comparing the accuracy of training and test before and after optimization, 

this paper comes to conclusion that GBoost is a convenient method with low requirements for parameter 

tuning. The XGBoost, comparing with GBoost, performs slightly better with the introduction of 

regularization but is correspondingly much more demanding for parameter tuning. The Random Forest 

method achieves vaguely superior results than the other two algorithms. After hyper-parameter tuning 

respectively, the three methods all reach a presentable accuracy and do not show serious over-fitting. 

Despite limitations in datasets, the results of this paper can to some extent verify the characteristics 

of the GBoost, XGBoost, and Random Forest method as well as indicate the critical factors in Titanic 

survival analysis. Features of greatest significance include Age, Fare, Sex, and Title, showing the 

priority in the rescue of Titanic disaster. The prediction model can be applied to effectively predict 

human survival in similar disasters based on diverse individual information, thereby offering guidance 

for emergency measure. 
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