

Comparison the Performances for Distributed Machine

Learning: Evidence from XGboost and DNN

Leqi Tang

College of Software Engineering, Sichuan University, Chengdu, China

tangleqi@stu.scu.edu.cn

Abstract. As a matter of fact, distributed machine learning approaches are widely adopted to

enhance the training speed. The purpose of this study is to compare the performance of

distributed machine learning models, specifically XGBoost and Deep Neural Networks (DNNs),

using a telecommunications customer dataset. The dataset consists of 320,000 samples and 25
features and the analysis focuses on model performance under different data heterogeneity

conditions. According to the analysis, XGBoost achieves excellent performance, rapidly

reaching a high AUC of 97.7% with a minimal number of iterations, proving its effectiveness on

structured, small and medium-sized datasets. In contrast, DNN struggled with this dataset and

failed to outperform XGBoost due to its low dimensionality and small size. The paper also

discusses the main limitations, including the lack of model diversity, the low dimensionality of

the dataset, and the problem of model interpretability, especially for DNN. The results suggest

that XGBoost is more suited to small and structured datasets, whereas DNN excels at high

dimensionality and complex datasets. Future research should focus on improving model diversity,

tuning, and addressing interpretability challenges.

Keywords: Distributed machine learning, XGBoost, Deep Neural Networks (DNN), telecom

dataset, model performance.

1. Introduction
Machine learning has achieved rapid development from theory to practical application over the past few

decades and has become a core driver of artificial intelligence and data analytics. Machine learning

techniques are widely used in areas ranging from image recognition and speech recognition to
personalized recommendation systems [1, 2]. With the explosive growth of data volume and increasing

computational demands, traditional stand-alone machine learning approaches face performance

bottlenecks in processing large-scale data. Therefore, distributed machine learning becomes a necessary

approach that improves efficiency and processing power by distributing computational tasks across
multiple compute nodes [3, 4]. Distributed learning appears to be critical for providing solutions for

learning from ‘mega’ datasets (large-scale learning) and naturally distributed datasets. The number of

learning sites can be increased to offset growth in data volume, resulting in a scalable learning solution.
In addition, distributed learning saves time and money by not having to collect data at a single

workstation for centralized processing. Although there are obvious advantages to distributed learning,

new challenges arise, such as the impact of inter-subdivision data heterogeneity on accuracy or the need
to protect inter-subdivision data's privacy [5].

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

191

Distributed machine learning can be used in a variety of industries, especially in finance, healthcare,

information and communication, and the accelerating manufacturing industry [6-8]. With the

exponential growth of data size, traditional stand-alone learning models are difficult to handle such huge

amounts of data. By distributing data and computational tasks across multiple nodes, distributed
machine learning can effectively tackle the challenges of big data processing [9]. Increasing global

investment and research in machine learning has fueled the rapid development of new technologies.

Future research hotspots in machine learning include advances in techniques such as deep learning,
reinforcement learning, and automatic machine learning (AutoML) [10]. How to improve model

interpretability, privacy protection and model fairness are also key challenges for machine learning in

the future. With the popularity of machine learning technology, different countries have adopted

different regulatory strategies for its development, especially needing to pay attention to laws and
regulations on privacy protection and data security. Joint learning, as an emerging technique to protect

data privacy, allows multiple participants to train models together without sharing raw data. In the future,

joint learning will become an important direction for distributed machine learning, especially in the
areas of privacy protection and data security [11, 12]. With the popularity of Internet of Things (IoT)

devices, the combination of edge computing and distributed machine learning has become a new

research hotspot. In edge computing, data processing and analyses are performed in close proximity to
the data source, which can reduce latency and improve response time [13].

This study hopes to explore how to select the optimal distributed machine learning model according

to the characteristics of the dataset, focusing on the performance differences between different

distributed machine learning models under the same dataset in terms of convergence speed, accuracy,
etc., and their reasons, and the selected models are XGboost decision tree and deep neural network. The

following pages will give a thorough explanation of these two models and the chosen database, as well

as the performance variances between the two types of models under the chosen databases and the
explanations for these variations. Finally, this study would like to share some research insights and

limitations of this paper, and provide an outlook for future research.

2. Data and method

XGBoost is an optimization algorithm based on the Gradient Boosting framework. XGBoost's main
objective is to create a powerful predictive model by combining multiple weak learners (typically

decision trees). By learning from the previous model's error, each new model gradually reduces the

overall error and improves prediction accuracy. The XGBoost algorithm can be understood in the
following ways. The objective function is defined as:

𝑂𝑏𝑗(𝜃) = ∑ 𝐿(𝛾𝑖 , 𝛾𝑖) +𝑛
𝑖=1

∑ 𝜔(𝑓𝑘)𝐾
𝑘=1

 (1)

The regularization term usually penalizes the number of leaf nodes 𝑇 and leaf node weights w of the

tree in the following form:

𝜔(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1

 (2)

XGBoost uses an iterative approach to add new weak learners. Assuming that the prediction value

of the current model is 𝛾𝑖
(𝑡)

, in the first 𝑡 + 1 iteration, XGBoost will construct a new tree 𝑓𝑡+1 to learn

the residuals of the previous model. The new predicted values are:

𝛾𝑖
(𝑡+1)

= 𝛾𝑖
(𝑡)

+𝑓𝑡+1(𝑥𝑖) (3)

To minimise the objective function, XGBoost uses a second-order Taylor expansion to approximate

the loss function. This causes the objective function to become at each iteration:

𝑂𝑏𝑗(𝑡+1) ≈ ∑ [𝑔𝑖𝑓𝑡+1
(𝑥𝑖) +

1

2
ℎ𝑖𝑓

𝑡+1

2 (𝑥𝑖)]𝑛
𝑖=1

+𝜔(𝑓𝑡+1) (4)

where 𝑔 and ℎ are the gradient and second order derivative (i.e., Hessian) of the loss function,

respectively, denoted as:

𝑔𝑖 =
𝜕𝐿(𝑦𝑖,�̂�𝑖

(𝑡)
)

𝜕�̂�
𝑖
(𝑡) ,ℎ𝑖 =

𝜕2𝐿(𝑦𝑖,�̂�𝑖
(𝑡)

)

𝜕(�̂�𝑖
(𝑡)

)2
 (5)

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

192

In order to find the best tree structure in each iteration, XGBoost uses a greedy algorithm for node

splitting. Specifically, it calculates the gain of the objective function by enumerating all possible splitting

points, and the best splitting point for the current node is chosen based on the highest gain. For each

candidate split point, the gain is calculated as:

𝐺𝑎𝑖𝑛 =
1

2
[

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
−

𝐺𝐿
2

𝐻𝐿+𝜆
−

𝐺𝑅
2

𝐻𝑅+𝜆
] − 𝛾 (6)

where 𝐺𝐿 and 𝐺𝑅 are the sum of the gradients of the left and right subtrees, and 𝐻𝐿 and 𝐻𝑅 are the sum

of the second order derivatives of the left and right subtrees. To prevent the model from overfitting,

XGBoost performs pruning after constructing the tree. By calculating the objective function after
pruning, XGBoost determines whether to remove some unimportant branches, thus simplifying the

model. Fig. 1 gives the sketch for the model.

Figure 1. A sketch of XGBoost (Photo/Picture credit: Original).

Deep Neural Network (DNN) is an artificial neural network that has various hidden layers. By
simulating the structure of biological neural networks, DNN is capable of handling complex non-linear

relationships. The DNN is made up of multiple layers of neurons, all of which are connected to the

neurons in the previous layer. In a typical DNN, there is an input layer, multiple hidden layers, and an
output layer. The input layer receives input data, the hidden layers extract features, and the output layer

generates the final prediction. Each neuron in DNN is given a weighted sum of the outputs from the

previous layer and produces an output using an activation function. The output for the j, which is the
neuron of a specific layer, is as follows:

𝑎𝑗
(𝑙)

= 𝜎(∑ 𝜔𝑖𝑗
(𝑙)𝑛

𝑖=1
𝑎

𝑖

(𝑙−1)
+ 𝑏𝑗

(𝑙)
) (7)

An activation function is designed to introduce nonlinearity to enable the network to fit complex

functional relationships. Commonly used activation functions include:

 ReLU (Rectified Linear Unit): 𝜎(𝑥) = max (0, 𝑥)

 Sigmoid: 𝜎(𝑥) =
1

1+𝑒−𝑥

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

193

 Tanh: 𝜎(𝑥) = tan ℎ(𝑥)

DNN calculates the output of each layer by forward propagation and finally generates the prediction

at the output layer. For the whole network, the forward propagation can be expressed as:

�̂� = 𝑓(𝑥; 𝜃) (8)

where 𝑓(𝑥; 𝜃) is the output function of the neural network and 𝜃 is the set of parameters of the network,

including all weights and biases. The loss function is used to measure the difference between the

predicted value �̂� and the true value 𝑦. Common loss functions are Mean Square Error (MSE) used in
regression tasks:

 𝐿(𝑦, �̂�) =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1
 (9)

and Cross-Entropy Loss for classification tasks:

 𝐿(𝑦, �̂�) = − ∑ 𝑦𝑖 log(�̂�𝑖)𝑛
𝑖=1

 (10)

DNN optimizes the network parameters by means of a backpropagation algorithm. Backpropagation
calculates the gradient of the loss function with respect to each parameter and updates the parameters

by a gradient descent algorithm to minimize the loss function. The gradient of each parameter is

computed by the chain rule:

𝜕𝐿

𝜕𝜔
𝑖𝑗
(𝑙) =

𝜕𝐿

𝜕𝑎
𝑗
(𝑙) ∙

𝜕𝑎𝑗
(𝑙)

𝜕𝑧
𝑗
(𝑙) ∙

𝜕𝑧𝑗
(𝑙)

𝜕𝑤
𝑖𝑗
(𝑙) (11)

The one needs to update weights and bias using gradient descent.

𝑤𝑖𝑗
(𝑙)

← 𝑤𝑖𝑗
(𝑙)

− 𝜂 ∙
𝜕𝐿

𝜕𝜔
𝑖𝑗
(𝑙) (12)

where η is the learning rate, which controls the step size of each update. Deep neural networks are able
to efficiently model complex nonlinear relationships through the combination of multiple layers of

neurons and nonlinear activation functions. Its core algorithms include forward propagation,

backpropagation and gradient descent.

The dataset comes from a Chinese telecom company. Using the user attributes that already exist
(such as basic personal information, user profile information). The user's phone brand, business

attributes, consumption habits, and preferences are used to match them with the most suitable cellular

plan and provide personalized services. The descriptions for the data are as following:

 Sample size: 320k

 Train size: 300k (150k each)

 Validation size: 20k

 Categories: 9

 Dimension: 25 Groups

This research splits the 300k training set into 2 sets in 3 different configurations. For 9 encoded

categories: 1, 3, 5, 7 as Group A; 0, 2, 4, 6, 8 as Group B. 2 sets with distinct labels (one with all Group

A, the other with all Group B). 2 sets with all labels but imbalanced proportions (one with 85% Group
A, 15% Group B; the other with 15% Group A, 85% Group B; Label Distribution Skew). For

homogeneous (Little Heterogeneity), this study randomly shuffled and split into two. For metrics,

accuracy and MSE (Mean Squared Error) are adopted.

3. Results and discussion

3.1. Model performance

The results of the XGBoost experiment were beyond the expectations, and the original intention was to

make some speculations and explorations on the mathematical principles of the two problems by
comparing the differences in the experimental results. However, the XGBoost model is too good in the

performance of telecom package matching, in the experiment, it does not even need to iterate at all, after

the first round of initialization is completed, it will reach an AUC value of about 97.7, and in the process

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

194

of iteration it continues to decline (presumably overfitting), but the decline is not more than 1, and the

overall iteration of 100 rounds still maintains an AUC value of about 96, and the data difference is too

small to analyze. For DNN, with 10 global iterations, this study used τ1 and τ2 and different

heterogeneity levels to train models (seen the configuration in Table 1). All Trained Models are shown
in Fig. 2 and Fig. 3.

Table 1. Configurations used to train the models

No. Training round Worker 1 Epochs E1 Worker 2 Epochs E2 Heterogenity Type

1 10 10 10 Strong Local Update

2 10 10 10 Moderate Local Update

3 10 5 5 Strong Local Update

4 10 5 5 Moderate Local Update

5 10 1 1 Strong Synchronous

6 10 1 1 Moderate Synchronous

7 10 - - - Centralized

Figure 2. Iterations-Accuracy Plot (Photo/Picture credit: Original).

Figure 3. Iterations-Loss Plot (Photo/Picture credit: Original).

3.2. Comparison and explanation

Strong heterogeneity leads to poor error floor (upper group of lines has strong heterogeneity (Non-IID)).

In this case, larger τ instead have lower error floor across the board. This might be due to the dataset not
meeting the requirements for Lipschitz smoothness, so the conclusion ” Larger τ gives worse error

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

195

convergence” may not hold in this particular case. This study used another setting with the same level

of data heterogeneity but different device heterogeneity setting.

Meanwhile, it is thought the reason for the difference in accuracy between the two models is that the

models are applicable to different datasets, XGboost is applicable to small and medium-sized
unbalanced discrete datasets, and at the same time performs better on structured data with some missing

data, while DNN is applicable to large-scale, high-dimensional datasets with complex non-linear

relationships, especially in the fields of image, speech, natural language processing and time series, etc.
Excellent performance. At the same time DNN requires a large amount of data and computational

resources. This dataset selected is a small to medium sized dataset, while only 25 dimensions, such

dataset size is not enough for DNN to have sufficient training (seen from Table 2).

Table 2. Device Heterogeneity

No. Training round Worker 1 Epochs E1 Worker 2 Epochs E2 Heterogenity Accuracy

1 10 5 5 Moderate 69.71

2 10 1 10 Moderate 69.38

3 10 10 1 Moderate 70.27

4 10 1 20 Moderate 71.94

5 10 20 1 Moderate 74.3

6 10 25 1 Moderate 76.49

7 10 50 1 Moderate 78.68

3.3. Limitations and prospects
In the experiments, two models, XGBoost and DNN, were used to process 25-dimensional telecom

company subscriber data. Despite the advantages of each of these two models, the experiment still has

some limitations. Only two models, XGBoost and DNN, were selected for the experiment, which limits
the breadth of the results. Other models (e.g. Support Vector Machines, Random Forests, Logistic

Regression, K Nearest Neighbors) may perform better or be more explanatory on this dataset. Besides,

no comparisons were made using simple baseline models (e.g., logistic regression or linear regression)

to effectively assess the relative strengths of DNN and XGBoost on this particular dataset. Meanwhile,
the relatively low dimensionality of the telecom company subscriber data with 25-dimensional features

may not fully utilize the strengths of DNN.DNN is more effective in dealing with high-dimensional and

complex data, and therefore DNN may not perform significantly better than traditional machine learning
models on this lower dimensional dataset. If the dataset has a small number of samples, DNN may

perform poorly due to overfitting. DNN usually requires large-scale data to be adequately trained,

whereas XGBoost may be more robust with fewer samples. In fact, DNN is a black box model and it is

difficult to explain its decision-making process. Although XGBoost provides feature importance
analyses, the lack of further model interpretation may limit the comprehensibility of experimental results,

especially for business decision-making processes. Business scenarios of telecommunication companies

may require a clear explanation of the model decision-making process in order to make appropriate
business decisions. Lack of interpretability may lead to limitations in the application of the model. In

addition, this study failure to adequately tune the hyperparameters of DNN and XGBoost may affect the

performance of the models. In particular, the structure and hyperparameters of DNN (number of layers,
number of neurons, activation function, etc.) have a greater impact on the performance, and the tuning

of these aspects may require more time and computational resources. The experimental data is only from

telecommunication company users and may not be generalizable to other domains. If the goal is to

develop a generalized model, datasets from different domains need to be tested.

4. Conclusion

To sum up, this study presents a comparative analysis of XGBoost and Deep Neural Networks (DNN)

using a telecom customer dataset containing 320,000 samples and 25 features. XGBoost performs well,

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

196

quickly achieving a high AUC of 97.7% with a minimal number of iterations, which suggests its

suitability for small to medium-sized, structured and unbalanced datasets. In contrast, DNN was tested

under conditions with varying degrees of data heterogeneity, with larger errors in the more

heterogeneous environments, possibly due to non-smoothing issues. While DNN is very powerful in
large, high-dimensional and complex data (e.g., image or speech processing), its performance on low-

dimensional datasets is less robust. The study also highlights its limitations, including limited model

diversity (only XGBoost and DNN were used) and the low dimensionality of the dataset, which may not
take full advantage of DNN. In addition, the paper identifies challenges in model interpretability

(especially for DNNs) and suggests that future research could benefit from incorporating more diverse

models, optimizing hyperparameters, and focusing on improving model transparency for better

commercial applications.

References

[1] Jordan M I and Mitchell T M 2015 Machine learning: Trends perspectives and prospects Science

vol 349(6245) pp 255-260
[2] Galakatos A, Crotty A and Kraska T 2020 Distributed machine learning Proceedings of the VLDB

Endowment vol 13(12) pp 2235-2248

[3] Liu T Y, Chen W and Wang T 2020 Distributed machine learning: Foundations trends and
practices Morgan & Claypool Publishers

[4] Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T and Rellermeyer J S 2020 A survey

on distributed machine learning ACM Computing Surveys vol 53(2) pp 1-33

[5] Zhang Q and Li X 2013 A survey of methods for distributed machine learning Frontiers of
Computer Science vol 2(1) pp 1-11

[6] Muscinelli E, Shinde S S and Tarchi D 2021 Overview of distributed machine learning techniques

for 6G networks Electronics vol 10(9) p 1035
[7] Guo Y, Zhao R, Lai S, Fan L, Lei X and Karagiannidis G K 2020 Distributed machine learning

for multiuser mobile edge computing systems IEEE Transactions on Communications vol 68(6)

pp 3457-3469

[8] Aminizadeh S, Heidari A, Toumaj S, Darbandi M, Navimipour N J, Rezaei M, Talebi S, Azad P
and Unal M 2022 The applications of machine learning techniques in medical data processing

based on distributed computing and the Internet of Things Journal of King Saud University -

Computer and Information Sciences vol 34(6) pp 3359-3374
[9] Xing E P, Ho Q, Dai W, Kim J K, Wei J, Lee S, Zheng X, Xie P, Kumar A and Yu Y 2015 Petuum:

A new platform for distributed machine learning on big data Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining pp 1355-1364
[10] Pugliese R, Regondi S and Marini R 2022 Machine learning-based approach: Global trends

research directions and regulatory standpoints Journal of Computer Science and Technology

vol 37(4) pp 759-774

[11] Kairouz P, McMahan H B and Yang Q 2022 From distributed machine learning to federated
learning: A survey Foundations and Trends® in Machine Learning vol 15(1) pp 1-198

[12] Konečný J, McMahan H B, Ramage D and Richtárik P 2016 Federated optimization: Distributed

machine learning for on-device intelligence Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS) pp 1-18

[13] Poncinelli Filho C, Marques E, Jr Chang V, dos Santos L, Bernardini F, Pires P F, Ochi L and

Delicato F C 2023 A systematic literature review on distributed machine learning in edge
computing IEEE Access vol 11 pp 100-120

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/103/20241196

197

