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Abstract. This paper presents a comprehensive exploration of the application of deep learning 
technology in fingerprint recognition, focusing on the development and impact of several novel 

algorithms. These algorithms have been specifically designed to address challenges in key sub-

fields such as pose estimation, direction field estimation, minutiae extraction, and minutiae 

matching. By integrating deep learning techniques, these new approaches significantly enhance 

the accuracy, stability, and efficiency of fingerprint recognition systems. The study demonstrates 

that these algorithms surpass traditional methods in several critical areas, offering improved 

precision in recognizing fingerprints, particularly in high-noise environments. Furthermore, the 

fully differentiable nature of these models contributes to their robustness, enabling more 

consistent and reliable performance across diverse scenarios. The results underscore the potential 

for these deep learning-based algorithms to set new benchmarks in the field, with broad 

implications for their application in security, law enforcement, and other areas requiring reliable 

biometric authentication. The use of these cutting-edge methods is anticipated to be vital in 
influencing the direction of fingerprint recognition technology as it develops further, 

guaranteeing increased security and precision. 
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1.  Introduction 

With the advancement and breakthrough of science and technology, biometric technology is widely used 

in people's daily life in today's society. As the most well-known and mature technology, fingerprint 
recognition has become an indispensable means in the process of identity authentication and 

identification. This technology is widely used in different scenarios due to its high accuracy, 

convenience, speed, reliability and difficulty in forging, such as mobile phone unlocking, online 

payment, identity collection and verification, customs security inspection, on-site evidence collection 
and case detection.  

Experts have found human fingerprints on a large number of artifacts and antiques, but fingerprint 

technology was not taken seriously before the 16th century [1]. In 1684, Nehemiah Grew first 
scientifically described the existence of fingerprints [2]. In 1880, Henry Foltz used biological theories 

and methods to standardize fingerprint research, and concluded that fingerprints are different from each 

other, and confirmed the theory that fingerprints remain unchanged throughout life [3]. In 1892, Francis 
Galton, a famous British anthropologist, summarized the achievements of his predecessors and proposed 
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that fingerprints are different for each person and remain unchanged throughout life [4]. Fingerprints 

can be classified and identified. With the assistance of Sub-Inspectors Azizul Haque and Hemchandra 

Bose, Henry created a new fingerprint categorization system based on Galton's system between July 

1896 and February 1897 [5]. The British Home Office officially recognized that no two individuals 
possess identical fingerprints. Consequently, law enforcement agencies began to heavily fund scientific 

research on fingerprint identification and trained numerous experts. For example, the Federal Bureau of 

Investigation (FBI) fingerprint identification division was set up in 1924. In 1975, the FBI started 
funding National Institute of Standards & Technology (NIST) to research algorithms, which led to the 

development of the M40 algorithm. In addition, French and England also start to develop their own 

Automatic Fingerprint Identification Systems (AFISs). With the rapid advancement of deep learning 

over the past decade, a paradigm shift in research has become inevitable. While current technology is 
sufficient for basic biometric recognition, deep learning can play a crucial role in addressing the 

challenges of identifying partial fingerprints from crime scenes and combating increasingly 

sophisticated techniques for creating fake fingerprints. 
A fingerprint recognition system is a biometric technology that confirms identity by recording and 

comparing the details of human fingerprints. Through machine learning, the accuracy of this recognition 

method can be significantly enhanced. The technical procedure consists of two primary components. 
Extracting fingerprint features comes first. In this step, a pre-trained neural network is used to segment 

the image and forecast orientation patterns after estimating the fingerprint center using a Region-based 

Convolutional Neural Network (R-CNN) that has been trained on a large number of samples. This 

process enables the predictive analysis of the pose, orientation field, and singular points of partial 
fingerprints, as well as the skeleton image, minutiae points, and inner and outer contours. The second 

step involves aligning the generated fingerprint with the reference fingerprint within a unified coordinate 

system. Based on minutiae points, dense registration is performed on the fixed-length matching results, 
with appropriate deformation correction applied. Additionally, techniques such as Siamese networks, 

spatial transformer networks, and Generative Adversarial Networks (GAN) are utilized to further 

improve recognition accuracy. Of course, no technology is perfect. This technology faces significant 

challenges in practical application, such as obtaining a sufficiently large fingerprint database to support 
training, ensuring the accuracy of reconstructed 3D simulated fingerprints, and addressing potential 

ethical and privacy concerns. 

This paper systematically explores the fundamental principles of fingerprint recognition technology, 
delves into algorithm design, examines various application scenarios, and discusses future development 

trends. The objective is to offer theoretical insights and technical references that can contribute to 

improving the practicality and security of fingerprint recognition technology. 

2.  Methodology 

2.1.  Dataset description and preprocessing  

In this study, several datasets were used to train the model and verify the recognition accuracy of the 

model, such as NIST Special Database 4, NIST Special Database 14 NIST Special Database 301 Nail 
to Nail (N2N) Fingerprint Challenge Dry Run [6], Fingerprint Verification Competition (FVC). At the 

same time, due to the cost and privacy issues involved in large-scale fingerprint data collection today, 

the current public fingerprint database is relatively small, which has certain limitations on the training 
accuracy of the model. Therefore, thesis also use GAN to generate some pseudo fingerprints to assist in 

training.  

2.2.  Proposed approach  

2.2.1.  Overview. The logical structure of the model used in this study is divided into two main 

components: fingerprint feature extraction and matching. The fingerprint feature extraction process is 

particularly critical, as it directly influences the final recognition outcome. This process can be further 
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broken down into several key steps: fingerprint posture estimation, direction field estimation, ridge and 

minutiae point extraction, and 3D finger reconstruction. Accurately capturing data at each of these stages 

is essential for achieving reliable recognition results. The pipeline is shown in the Figure 1.  

 

Figure 1. Flowchart of fingerprint recognition system. 

The pose estimation part can be well completed by Faster R-CNN technology [7]. The direction field 
estimation is done by cutting the fingerprint image into blocks and splicing them together through a pre-

trained convolutional neural network (ConvNet) to form the entire direction field [8]. Then the minutiae 

point extraction is completed by the weight-learnable FingerNet [9]. For fingerprint matching, the 
technical difficulty lies in what kind of feature matching to use. Traditional matching features include 

minutiae matching [10], fixed-length matching [11], rigid registration, etc. This article mainly discusses 

the fixed-length matching technology, which is relatively more influenced by deep learning and has 
made rapid progress. 

2.2.2.  Faster R-CNN. First, for an input fingerprint image, the pre-trained Faster R-CNN can generate 

hundreds of possible prediction boxes. The direction types of these prediction boxes are mostly close to 

the true direction. In order to further filter the prediction results to make them better match the true 
direction, the researchers use a specific screening method to filter the prediction directions and combine 

them by weight to get close to the true direction.  

Specifically, the model will first classify these prediction boxes into dozens of major categories. 
Then, for the prediction boxes contained in each major category, by gradually increasing the confidence 

threshold, the prediction boxes with confidence greater than or equal to the confidence threshold are 

retained, so that only one bounding box is retained for all major categories except those close to the true 
direction. For the major categories close to the true direction, the non-maximum suppression (NMS) 

technology is used to reduce them to one bounding box. Then, in the inter-class combination step, the 

bounding box with the highest probability is selected first, and the remaining bounding boxes can be 

divided into two types at this time. First, a weighted method will incorporate the direction prediction 
result if the probability exceeds the threshold and the angle between the selected direction and the 

direction is smaller than the threshold. For the bounding boxes that do not meet the above conditions, 

they are automatically ignored. Compared with traditional methods, this screening combination 
mechanism can improve the consistency of different prediction directions to a certain extent. 

2.2.3.  ConvNet. In this step, the researchers proposed a new perspective to solve the problem of 

directional field estimation. They transformed the problem into a classification problem and used a 

ConvNet to solve it. Specifically, in the pre-training part, the researchers used the NIST System 
Dynamics (SD) 4 database to obtain all 2000 16*16-pixel directional fields, including five types of 

fingerprints, 400 of each type. Then, 10*10 directional fields were extracted again and these new 

directional fields were classified into 128 categories by the fast K-means clustering method. In addition, 
the researchers also used the NIST SD14 dataset to extract more training samples and perform noise 

training. For a given scene image, the model will (1) remove large-scale noise enhancement images, (2) 
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divide the image into a large number of image blocks, and each small detail is divided into several image 

blocks to pursue high accuracy, (3) send the cut image to ConvNet for processing to predict its 

directional pattern and output the relevant probability or confidence, (4) combine all prediction methods 

together and adjust the contradictions appropriately to form the entire directional field.  

2.2.4.  FingerNet. This method is based on the traditional algorithm and uses deep learning technology 

to expand and enhance it. The traditional fingerprint processing process can be summarized as (1) 

direction estimation, (2) segmentation, (3) enhancement, and (4) detail point extraction. The researchers 
transformed these steps into a CNN with fixed weights. Then, it was further expanded into the FingerNet 

network. The detail extraction part was significantly enhanced in this process. Specifically, after 

inputting the enhanced output obtained in the previous steps, the module will generate four different 

graphs: the first graph is the detail score graph, which is used to indicate whether there is a detail at this 
location; the second and third graphs represent the probability distribution graphs in the x and y 

directions, respectively, which are used for accurate positioning through 8 discrete position classification 

tasks; the fourth graph is used to represent the angular direction of the detail point. After obtaining 
enough data, the results are filtered by appropriate thresholds and redundant details are cut out by NMS 

to make the results clear and distinguishable. In order to distinguish the direction of the detail point and 

the direction of the direction field, the researchers used strong and weak labels for marking, the former 
is marked as a strong label, and the latter is marked as a weak label.  

2.2.5.  DeepPrint. DeepPrint technology can be regarded as an important step in the development of 

fixed-length fingerprint matching. The implementation of this technology relies on three modules: The 

first module is the alignment module. In this module, the traditional solution is to give some specific 
reference points to assist the transformation. The researchers used the attention mechanism instead. This 

means that the positioning network can learn how to transform accurately through autonomous learning, 

so that it can gradually better distinguish the fingerprint direction. After this step, the fingerprint will be 
aligned to the same coordinate system for subsequent comparison.  

The second and third modules are carried out simultaneously. The main tasks of both modules are to 

extract features based on the aligned images obtained in the previous step, and classify them to determine 

the "owner" of the fingerprint image. However, the features they rely on are slightly different. The first 
one relies on the overall texture features and is highly dependent on the ridge direction and frequency, 

while the second one relies on the details for resolution. Finally, each of them will give a 96-dimensional 

vector, and the final result will be the concatenation of the two vectors after normalization. Compared 
with using two independent models, the advantage of using this method is that it can reduce the 

complexity of the model. 

3.  Result and Discussion  

3.1.  Results of faster R-CNN   

Figures 2 and 3 respectively show the results given by different algorithms. The red arrows represent 

the results from Ouyang [7], while the blue arrows represent the results of the previous state-of-the-art 

algorithm by Su [12]. Each column in Figure 2 corresponds to the same fingerprint object. It can be 
observed that in the vast majority of cases, the algorithm by Ouyang [7] produces estimates with smaller 

directional deviations, generally maintaining the same direction. In contrast, the results from Su 

algorithm show a higher dependence on the quality of the fingerprint image, with deviations remaining 
at a relatively large level [12]. This situation is particularly evident in the test results of groups (b) and 

(f). Figure 3 illustrates the differences in robustness of different algorithms under various noise 

interferences. It can be seen that the new algorithm clearly has a higher resistance to interference, which 
is notably evident in images (c), (d), and (e). 
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Figure 2. Comparison of the stability of two pose estimation methods. 

 

Figure 3. Examples of pose estimation. 

3.2.  Test results of direction field estimation   

Column (a) displays a comparison of orientation fields produced by three distinct algorithms on three 
distinct clipped latents. (b)–(d) The orientation fields that were acquired using the global orientation 

patch dictionary, the suggested ConvNet-based technique, and the ridge structure dictionary [13], and 

(e) the mated rolled prints of (a). To improve visual quality, these latents' contrast has been increased. 

 

Figure 4. Comparison of orientation fields. 

Table 1 and Figure 4 present the test results. Using the NIST SD27 latent fingerprint database, the 

researchers assessed the root mean square deviation of several algorithms in the experiment. Figure 4 
compares the accuracy of several algorithms when applied to images with manually labeled direction 
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fields. The results indicate that the deviation of the proposed algorithm is significantly smaller than that 

of other algorithms. This means that for the same fingerprint, the direction field produced by this 

algorithm is more consistent and less influenced by image variations. Furthermore, the algorithm's 

estimation of the direction field is more accurate than other algorithms and, in some cases, even 
surpasses the accuracy of manually labeled direction fields. Additionally, the last two rows of data in 

the table demonstrate that incorporating noise simulation during training can effectively enhance the 

algorithm's accuracy, making it better suited for real-world images, particularly those with high levels 
of noise. This improvement increases the algorithm's practicality and robustness in everyday 

applications. 

Table 1. Average Root Mean Square Deviation (RMSD) of different orientation field estimation 

algorithms on NIST SD27 latent database. 

Algorithm All Good Bad Ugly 

LocalizedDict[14] 

(manually marked pose) 
13.76 10.87 14.12 16.40 

LocalizedDic[14] 14.35 11.15 15.15 16.85 

GlobalDic [13] 18.44 14.40 19.18 21.88 

RidgeDic [12] 19.53 15.34 20.70 22.68 

Proposed  
(without noise simulation) 

14.44 11.42 14.61 17.41 

Proposed  

(with noise simulation) 
13.51 10.76 13.94 16.00 

3.3.  FingeNet results   
A variety of metrics can be used to assess minutiae extraction performance; the precision-recall curve 

was employed in this investigation. Recall is the genuine positive rate, whereas precision is the positive 

forecast value. The algorithms compared include MINDTCT from NIST, Gabor-based algorithms, 
Autoencoder-based algorithms, FCN-based algorithms, and VeriFinger, all of which are considered 

relatively advanced. As shown in Figures 5, 6, and 7, the new algorithm tested on the NIST SD27 

database achieved average position and angle errors of 4.4 pixels and 5.0 degrees, respectively, while 
tests on the FVC 2004 database yielded errors of 3.4 pixels and 6.4 degrees. These results indicate an 

overall improvement in recognition ability compared to previous algorithms. Notably, the recognition 

rate, as demonstrated by the Cumulative Match Characteristic (CMC) curve, is nearly double that of the 

second-best Fully Convolutional Network (FCN) algorithm. These findings clearly demonstrate that the 
new algorithm outperforms its predecessors in all evaluated aspects. 

 

Figure 5. Precision-Recall curves of different minutiae extraction algorithms on NIST SD27. 
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Figure 6. Precision-Recall curves of different minutiae extraction algorithms on FVC 2004 database set 

A. 

 

Figure 7. Identification performance (CMC curves) of different minutiae extraction algorithms on NIST 

SD27. 

4.  Conclusion  

This research leverages advancements in deep learning to address and optimize the limitations of 

existing fingerprint recognition algorithms. By refining various steps and angles of the recognition 
process, the pre-trained deep learning models demonstrated several key improvements: they provide 

more stable estimation results, exhibit enhanced recognition capabilities for high-noise images, 

significantly accelerate retrieval speed, and maintain the advantage of being fully differentiable. These 

attributes underscore the potential for deep learning to continue driving progress in the field of 
fingerprint recognition. The newly introduced algorithms—such as the Faster R-CNN-based pose 

estimation, ConvNet-based direction field estimation, FingerNet-based minutiae extraction, and 

DeepPrint-based minutiae matching—have all shown varying degrees of improvement in accuracy and 
reduction of deviation compared to previous methods. However, there remain areas for further 

enhancement, particularly in improving recognition accuracy for high-noise images, refining the 

directional field recognition by further subdividing directional field types, developing more accurate 
segmentation methods, and strengthening the ability to detect and identify fake fingerprints. Moving 
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forward, ongoing advancements in these areas will be crucial in further advancing the effectiveness and 

reliability of fingerprint recognition technology based on deep learning. 
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