
 

 

Adaptive Multi-layer Attention Double Dueling Deep Q-

Network for Muti-agent Reinforcement Learning 

Jiyu Jiang
 

School of AI and Advanced Computing, XJTLU College, Suzhou, China 

Jiyu.Jiang21@student.xjtlu.edu.cn 

Abstract. In multi-agent fields, traditional muti-agent DQN methods often suffer from 

overestimation bias and overestimation of unimportant actions, especially when state-action Q-

value differences are slight. To deal with such issue, we present an adaptive Multi-layer Attention 

Double Dueling Deep Q-Network (MAD-D3QN) model, aiming to improve decision-making 

accuracy in complex multi-agent environments. The proposed model utilizes two attention layers 

that dynamically calculate state value and action advantage weights, facilitating more precise Q-

value estimation and reducing the common overestimation bias. Related experiments carried out 

in StarWar II scenarios show that the MAD-D3QN model obviously outperforms traditional 

methods (IQL,DQN), achieving higher decision efficiency and robustness. Our findings 

demonstrates that the MAD-D3QN framework not only promotes the state-of-the-art in multi-

agent reinforcement learning but also provides potential applications in real-world cooperative 

tasks. Future research will delve into the integration of advanced multi-agent communication 

structures to further enhance model adaptability. 

Keywords: Multi-Agent Systems, Double DQN, Dueling DQN, D3QN, Attention Mechanisms. 

1.  Introduction 

Multi-Agent Reinforcement Learning (MARL) has emerged as a critical subfield within the broader 
domain of Deep Reinforcement Learning (DRL), playing a pivotal role in the development and 
deployment of intelligent systems in complex, dynamic environments. Compared to the classical 
reinforcement learning methods that mainly focus on maximizing the rewards to select potential best 
policy for a single agent, MARL not only requires to make real-time decisions in response to a rapidly 
changing environment but also to engage in intricate interactions with other agents, showing a promising 
result in promoting various large-scale applications, such as robot collaboration, e-sports. 

Existing MARL approaches mainly follow a two-stage framework, where each agent learns the 
interaction with the environment and then communicate through some well-designed strategies. As a 
cornerstone of the deep reinforcement learning, Deep Q-Network (DQN) integrates the classic Q-
learning with deep neural networks for the first time [1], which leverages the powerful non-linear 
transformation ability of the convolutional neural network to alleviate the generalization challenges 
faced by Q-learning in high-dimensional state spaces. The success of DQN attracts increasing attention 
from both academic and industry, and researchers further explore its potential applications in multi-

agent environments. One of the representative solutions is directly applying DQN to Independent Q-
Learning, where each agent operates its own DQN instance and treats the actions of other agents as part 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

211 



 

 

of the environment [2]. However, because the strategies of agents in multi-agent systems dynamically 
influence the environment, Independent Q-Learning (IQL) encountered issues of instability and poor 
convergence during the learning process. To address these challenges, researchers proposed the 
Centralized Training, Decentralized Execution (CTDE) framework [3][4]. CTDE enhances the stability 

and efficiency of policy learning by allowing agents to share information during the centralized training 
phase, enabling joint optimization within a global environment model. During the execution phase, each 
agent acts independently based on the strategies learned during training. Inspired by the CTDE 
framework, Rashid et al. [3] combine different individual agents' Q-value functions based on a hybrid 
network architecture, which contributes to more flexibly Q-values optimized under the constraints of a 
global Q-value function. Sunehag et al. [4] propose the Value-Decomposition Networks (VDN), which 
approximates the global Q-value function by linearly combining the Q-values of individual agents. 
Though these methods have achieved significant progress, we argue their adaptability and performance 

are still affected by two serious issues. Firstly, the past structure in MARL always suffered from the 
issue of Q-value overestimation [5] and the inability to effectively distinguish between state values and 
action advantages [6]. Secondly, during the training stage, the traditional model inefficiently allocate 
computational resources, especially wasting computing sources on low-quality epochs [7], thus 
frequently ignored high TD errors which were critical for preserving the total efficiency and refining the 
model's accuracy.  

To address the core challenges encountered, we propose an adaptive Multi-layer Attention Double 

Dueling Deep Q-Network (MAD-D3QN) for the multi-Agent reinforcement learning. Specifically, we 
first develop a two-layer attention module to dynamically adjust the computation of Q-values. The first 
attention layer calculates initial weights from feature vectors extracted from fully connected and 
convolutional layers, which will be used to generate intermediate weights by balancing the value and 
advantage components. The second layer further refines these intermediate weights and integrates them 
into the dueling DQN Q-value computation formula. To encourage a deeper collaboration among 
different agents, we introduce a weight allocation mechanism based on the trajectory quality of each 

deduction. By assigning higher update weight for the agent with high-TD trajectory, we accumulate the 
reward of each agent in a dynamic manner by considering the reward of their own and other agents, 
which helps optimize the whole model for a global best performance and improve computational 
efficiency during training. Extensive experiments are conduct to demonstrate the effectiveness of our 
method, involving the combinations of maps, difficulty levels, and agent quantity using the StarCraft II 
environment. To summarize, our main contributions include:  

(1) This paper proposes a novel adaptive attention-based deep Q-Network, as the first attempt to 
combine the Double DQN and Dueling DQN in the MARL task. 

(2) This paper develops a weight allocation mechanism based on the trajectory quality, which boosts 
more complementary collaboration among agents and significantly accelerate the training speed. 

(3) This paper evaluates the proposed method through extensive experiments, outperform the 
previous methods by a large margin in various settings. 

2.  Related Work 

2.1.  D3QN Methodologies 
The development of Multi-Agent Reinforcement Learning (MARL) benefits from the traditional Q-
learning algorithm and its evolutions, such as Deep Q-Networks (DQN). Q-learning algorithm calculates 
the expected return for choosing a particular action in a specific state by learning the action-value 

function Q(s, a) [8]. By using neural networks to approximate the Q-value function, DQN avoids the 
direct storage of huge Q-value tables [1], thus extending the application of Q-learning to a high-
dimensional state space. The Independent DQN (IDQN) adapts the DQN to the multi-agent environment 

[2], where each agent learns its own DQN model from interactions within the environment to make 
decisions. Further extensions like Double DQN [5] and Dueling DQN [6] have found significant 
applications in MARL. The MAD3QN model (Dueling Double DQN) integrates the strengths of Double 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

212 



 

 

DQN and Dueling DQN, which offers a more robust and efficient framework for tackling the 
complexities of multi-agent environments. By combining the double network structure of DDQN, 
D3QN mitigates overestimation bias in Q-value estimation by using two separate networks for action 
selection and target Q-value calculation. Meanwhile, beneficial from the dueling Q function, MAD-

D3QN decomposes the Q-value into state value and action advantage. All the combinations improve the 
stability and convergence of strategies by enabling faster identification of effective policies in MARL 
environments, providing more accurate Q-value estimates and policy search. 

2.2.  CTDE Structure 
Centralized Training with Decentralized Execution (CTDE) is a key paradigm in MARL that addresses 

challenges like instability and coordination difficulties. In detail, CTDE optimizes strategies using 
global information during training, while agents act independently based on local observations during 
execution. Also, the core advancements include VDN [9], which decomposes global Q-values into the 
sum of individual agents' Q-values, allowing for straightforward coordination through additive value 
functions. QMIX uses a nonlinear mixing network to combine individual Q-values conditioned on the 
global state, enables the modeling of complex inter-agent interactions[8]. Furthermore, COMA and 
MADDPG enhance policy gradients with centralized critics, introducing a centralized critic that 

computes advantage functions for each agent, conditioned on the joint actions of all agents, to improve 
credit assignment in cooperative settings. [10-11].  

 

Figure 1. The pipeline of our proposed MAD-D3QN network. MAD-D3QN processes observations 
through layers, GRU, attention mechanisms, and DDQN updates, computing and combining Q-values 

across agents to optimize learning in multi-agent environments. 

3.  Methodology 

3.1.  Overview 

The framework of our MAD-D3QN is shown in Figure 1. Each agent obtains observations from the 
environment, which is processed through a fully connected layer followed by a ReLU activation function. 
The output, along with the hidden state, is fed into a Gated Recurrent Unit (GRU) to capture temporal 
dependencies and update the hidden state over time. Taking all all the former outputs as input, a two-

layer attention module sharing similar internal structure are introduced to calculate the weight 
parameters. Subsequently, the model calculates the state value and advantage functions, which 
respectively represent the intrinsic value of the current state and the relative advantage of different 
actions, equipping with the calculated weigh parameters. After obtaining Q-value and making relative 
action-decisions, the Double DQN (DDQN) update mechanism is employed to mitigate overestimation 
bias in Q-value estimation. Finally, based on the VDN model, the Q-values from multiple agents are 
linearly combined to form total Q-value and facilitate cooperative strategy learning. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

213 



 

 

3.2.  Multi-layered Attention Dynamic D3QN Module 

Each agent identifies the state and obtains the observation 𝑂𝑡, containing the shape of each agent's 
observation space, action information for the previous time step and the agent numbers. Afterwards, we 
utilize a fully connected layer to map the observation to a high-dimensional space to obtain eigenvectors. 
In the following stage, we input the eigenvector into the GRU unit to get the hidden state at the current 

moment, regarded as ℎ𝑡. The first-level attention mechanism calculates the preliminary dynamic weight 

𝛼1 and 𝛽1 according to the hidden stateℎ𝑡. On the second-level attention mechanism, the combined 

weights are further adjusted to generate the final dynamic weights 𝛼2 and 𝛽2: 

{
 
 

 
 

(1) 

where 𝑊1and 𝑊2 are the intermediate results obtained through these linear transformations and the 
ReLU activation function, which are then passed through the Softmax function to generate attention 

weights 𝛼1, 𝛽1 and 𝛼2, 𝛽2. 𝛼1 and 𝛽2 adjust the first combination of the state value V(s) and the 
advantage function A(s, a), while 𝛼2 and 𝛽2 further refine these values to produce the final Q-value. 
W4 and W5 are weight matrices in the neural network that apply linear transformations to the input 

hidden state and intermediate results, helping adjust the output of the network layers. b4 and b5 are bias 
vectors added to the results of these linear transformations to further refine the output. With the two 
weights obtained through equation (1), the Q value of Dueling DQN is updated as:  

Q(st, at) = α2V(st, at) + β2(A(s𝑡 , a𝑡) −
1

|A|
∑A(s𝑡 , a′)) (2) 

Q(st, at) represents the expected reward for taking action 𝑎𝑡  state 𝑠𝑡 . And V(s𝑡 , a𝑡) is the state 

value function. A(s, a)  is the advantage function, The term 
1

|A|
𝛴A(s, a′)  represents the average 

advantage of all possible actions in state𝑆𝑡, and we input this Q value into the Double DQN network 
working structure, as: 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡, 𝑎) = 𝑟𝑡 + 𝛾 × (𝛼 × 𝑉𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡 +1) +𝛽 × [𝐴𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡 + 1, 𝑎𝑚𝑎𝑥) −
1

𝐴
∑𝐴𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡 + 1,𝑎

′)

𝑎′

]    (3) 

The final Q-value is updated by integrating these components, along with the immediate reward 𝑟𝑡, 
discount factor 𝛾. 

3.3.  VDN System and Weighted experience  

After calculating the Q-value for each agent, these Q-values are fed into the VDN network. The VDN 
network aggregates all agents' Q-values into a global Q-value through a simple summation operation. 

Once the global Q-value Qtotal(St,𝐴𝑡) is obtained, the next step is to compute the total TD error. By 

measuring the difference between the current estimated Q-value and the target Q-value, we obtain the 
following mathematical formula: 

TDerror = (r𝑡 +𝛾 ∙ Q𝑡𝑎𝑟𝑔𝑒𝑡(St+1,At+1)) − Qtotal(St, At) (4) 
Where 𝑟𝑡 is the immediate reward obtained at time step t, and 𝛾 is the discount factor, representing 

the importance of future rewards. Qtarget(St+1,At+1) represents the target Q-value for the next state 

St+1 and action At+1, and Qtotal(St, At) is the current estimated collective Q-value of all agents. After 
the TD error is computed, in order to make the model pay more attention to key decision points that 

need optimization, we calculate the sample weight 𝑊𝑡 based on the sign of the TD error. If the TD 

error at time step t is negative, it indicates that the model's current prediction𝑄total(𝑆𝑡+1,𝐴𝑡+1) is higher 

than the target Q-value. In this case, the sample's weight is set to 1; otherwise, the weight remains at its 
initial value, and this procedure is as follows: 

)(Re 441 bhWLUW t +=

)max(],[ 111 WSoftβα =

)(Re 5152 bZWLUW +=

)max(],[ 222 WSoftβα =

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

214 



 

 

𝑊 = {
1, 𝑇𝐷 < 0

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 < 1, 𝑇𝐷 ≥ 0
(5) 

Finally, by aggregating the weighted TD errors (𝛿𝑡) of all samples, the loss function Loss for the 
entire system is calculated. The loss function Loss is obtained by performing a weighted summation of 
the errors, where the weights of the samples are used to weight the errors. 

 

               𝐿oss = 𝑊𝐼 ∙ 𝛿1 +W2 ∙ 𝛿2 +⋯…+𝑊𝑡 ∙ 𝛿𝑡 

=∑𝑊𝑡 ∙ 𝛿𝑡 (6) 

𝐿 =
1

𝑁
∑ 

𝑁

𝑡=1

𝑊𝑡 ∙ [(𝐫𝑡 +𝛾 ⋅ 𝑄𝑡𝑜𝑡𝑎𝑙𝑡𝑎𝑟𝑔𝑒𝑡(𝑆𝑡+1, 𝐴𝑡+1)) ⋅ 𝑄𝑡𝑜𝑡𝑎𝑙(𝑆𝑡 ,𝐴𝑡)] (7) 

In this simplified formula, the complex Dueling structure and VDN mechanism (equation(1), (2), (3)) 

are condensed into two Q value calculations, Qtotaltargt(St+1, At+1) and Qtotal(St, At). 

4.  Experiments 

4.1.  Experiment design 
We select StarCraft II as the testing environment to validate the performance of our proposed multi-
agent reinforcement learning model. In the whole experiment, we start from the scenarios with low 
difficulty, low complexity and a minimal number of agents, gradually increasing these parameters to 
construct various combinations of environments. We explore the model performance on several classic 

maps such as 3m, 8m, and 2vs_1c. Also, the experiments began with the most basic tasks and 
progressively increased the difficulty of AI opponents, including levels 3, 5, and 7. In each combination, 
the whole-training-time reward and win_rates were recorded in the style of line charts to display the 
whole developing tendency. After obtaining the outcomes, our model was compared against several 
baselines, including a single MADDQN and the traditional IQL model, where the win rate and 
cumulative reward with training time steps are also assessed.  

4.2.  Implement details 

We definite the overall time step and training-before episode as 300000 and 1, while all agents share a 
similar network. The discount factor of future rewards and the discount factor for the TD (lambda) are 
set to 0.99 and 0.9, respectively. The epsilon-greedy exploration strategy is initialized with epsilon at 1, 
where the minimum exploration threshold is set to 0.05 and the decay rate of epsilon over time is 
configured to 150,000 steps. The experience replay and target network update parameters include batch-

size set to 16, and buffer-size set to 5,000, along with the target-update-cycle set to 300. All the models 
are optimized using the RMSProp algorithm. The gradient clipping parameter grad-norm-clip is set to 
10, employed to prevent gradient explosion and ensure the stability of training process.  

4.3.  Results on map 2v_vs_1sc 
To verify the effectiveness of the model, we first compared the performance of different methods on 

Map 2v_vs_1sc, whose results are shown in Figure 2. When the difficulty level is at level 3, MAD-
D3QN shows a significant improvement in rewards in the initial stage, stabilizing at a higher level 
around 20.0, while IQL and MADDQN experience more volatile tendencies during the first 20000 time 
steps. In terms of win rates, our MAD-D3QN quickly rises to near 1.0 after about 20 episodes, showing 
a faster and more stable convergence speed compared to other methods. When the difficulty level 
increases to 5, we also maintain excellent performance gains in terms of winning rate and rewards, 
surpassing both the IQL and MADDQN. Finally, at the highest difficulty level 7, our MAD-D3QN 
performs similar to other models in the initial 100000 time steps, while will quickly outperform other 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

215 



 

 

methods and stabilize at a reward of 20 and a high win rate of approximately 0.975. All the results show 
the effectiveness of our proposed MAD-D3QN. 

Figure 2. Comparison of reward and win_rate on map 2v_vs_1sc at different levels. 

4.4.  Results on map 3m  
We also conduct the experiments on the map of 3m. As shown in Figure 3, our MAD-D3QN model 
quickly stabilizes rewards between 18.0 and 20 after approximately 15 episodes at the difficulty level 
of 3, while IQL struggles with rewards fluctuating around 10. This result shows the outstanding 
performance in multi agents reinforcement learning. Regarding the win rate metric, we obtain a peak 
value of nearly 1.0 after 20 epochs. The win rate of MADDQN fluctuates between 0.3 and 0.5, and IQL 
remains below 0.2. At difficulty level 5, our model consistently achieves rewards in the 17.5 to 20 range 

after 30 episodes, outperforming MADDQN, which stabilizes between 15 and 17.5. IQL continues to 
underperform, with rewards mostly fluctuating around 10. Regarding the win rates, our model reaches 
a near-perfect 1.0 win rate by episode 25 and maintains this high level, while MADDQN fluctuates 
between 0.4 and 0.7, and IQL nearly exceeds 0.2. For the most challenging case in Figure 3(c), we still 
outperform all the counterparts. Our rewards can quickly increase to 17.5 within 30 epochs, highlighting 
the robustness of proposed MAD-D3QN in handling complex scenarios. Compared to the MADDQN 
that achieves a reward around 15 but exhibits significant variability, our MAD-D3QN shows more stable 

reward stabilizing between 17.5 and 20. IQL remains consistently low with a reward generally below 
10. Moreover, we achieve and sustain a win rate near 1.0 by episode 30, while MADDQN struggles 
with fluctuations between 0.3 and 0.6, and IQL rarely surpasses 0.2. All the results show the 
effectiveness of the proposed MAD-D3QN on map 3m. 

   

   
(a) Level3 (b) Level 5 (c) Level 7 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

216 



 

 

Figure 3. Comparison of reward and win_rate on map 3m at different levels. 

4.5.  Results on map 8m  
Figure 4 shows our quantitative comparison with the state-of-the-art methods on more complex 8m. At 
difficulty level 3, the reward of MAD-D3QN rapidly increases to 20 during 30 epochs, while MADDQN 
shows a competitive reward stabilizing between 15 and 17.5. Our MAD-D3QN surpass the IQL more 
than 15 in the best reward. Similar gain trend can be observed in the win rates. At difficulty level 5, 
rewards of our model keep stable between 17.5 and 20 after 30 episodes, while MADDQN stabilizes 

slightly lower experiences notable fluctuations with a limited reward around 15. The win rates show that 
out model achieves better performance by episode 30, maintaining a win rate close to 1.0. In the last 
stage, facing the highest difficulty, our model displays its superiority successfully, where rewards 
quickly rise and stabilize between 17.5 and 20 by episode 35. For MADDQN, its rewards can reach 20 
but have difficulty maintaining the value, while IQL only exceeds rewards of 12.5 to 15. Also, the win 
rates show the dominance of our model, as it reaches near 1.0 by episode 30, whereas MADDQN 
fluctuates more widely between 0.7 and 0.9, and IQL remains mostly flat around 0.4. Across different 
maps, we can achieve a consistent performance gain, demonstrating the effectiveness and robustness of 

our proposed MAD-D3QN. 

   

   

(a) Level3 (b) Level 5 (c) Level 7 

   

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

217 



 

 

Figure 4. Comparison of reward and win_rate on map 8m at different levels. 

 

4.6.  Quantitative Comparison with SOTA methods  
We finally report the best reward and win rate of our method on different maps in Table 1. For a fair 
comparison with previous methods, we fix the training step with a value of 25000 at the most challenging 
difficulty level 7. We obtain 100% win rate on map 2_vs_1c and map 3m, which outperforms the 

MADDQN by 15.7% and 31.3%, respectively. When the scene changes to more complex map 8m, our 
win rate is lower than MADDQN within the same training steps. We suppose the possible reasons may 
come from our dual attention mechanism, where training such complex network cost more 
computational overhead. However, our reward values consistently outperform on different maps, 
indicating the effectiveness of our collaborative strategy, which encourages different agents to consider 
the actual situation of other agents while maximizing their own performance, thereby maximizing the 
overall quality of network environment interaction. All the above results indicate the effectiveness of 

our method. 

Table 1. Rewards and win_rates at fixed 250000 time steps 

Method 
2_vs_1c 3m 8m 

reward win rate reward win rate reward win rate 

IQL 12.324 0.031 13.013 0.125 10.111 0.093 

MADDQN 19.939 0.843 17.877 0.687 19.541 0.937 

Ours 20.248 1.000 20.000 1.000 19.095 0.875 

5.  Conclusion 

This paper proposes a MAD-D3QN model for better decision-making in Multi-Agent reinforcement 
learning. The model enables accurate Q-value calculation, with multi-layer attention mechanisms that 
can dynamically change state value and action advantage weights suitable in complicated multi-agent 
environments to construct a dynamic D3QN. Furthermore, it effectively learns from trajectories with 
higher rewards based on TD error, thereby focusing more on better-quality trajectories during training. 
Our model effectively mitigates the overestimation bias and discerns the intrinsic value of a state 
independently of the selected action, making more informed and effective decision-making processes. 

We evaluated it in multiple settings across different StarCraft II maps with various numbers of agents 
and difficulty levels. The experiment results demonstrate that the model can improve policy flexibility 
and efficiency while also achieving stronger adaptation ability in complex adversarial environments. 

References 

[1] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., 

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., 
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529-533. 

   

(a) Level3 (b) Level 5 (c) Level 7 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

218 



 

 

[2] Hafiz, A. M., & Bhat, G. M. (2020). Deep Q-Network based multi-agent reinforcement learning 
withbinary action agents. arXiv preprint arXiv:2008.04109. 

[3] Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J., & Whiteson, S. (2018). 
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning. 

Proceedings of the 35th International Conference on Machine Learning, PMLR, 80, 4292-
4301. 

[4] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., ... & Blundell, 
C. (2018). Value-decomposition networks for cooperative multi-agent learning. arXiv preprint 
arXiv:1706.05296. 

[5] He, Y., Mu, C., & Sun, Y. (2023). Enhancing Intersection Signal Control: Distributional Double 
Dueling Deep Q-learning Network with Priority Experience Replay and NoisyNet Approach. 
2023 19th International Conference on Mobility, Sensing and Networking (MSN), Mobility, 

Sensing and Networking (MSN), 2023 19th International Conference on, MSN, 794–799. 
https://doi-org.ez.xjtlu.edu.cn/10.1109/MSN60784.2023.00116 

[6] Zhang, K., Yang, Z., & Başar, T. (2019). Multi-Agent Reinforcement Learning: A Selective 
Overview of Theories and Algorithms. 

[7] Lou, Z., Wang, Y., Shan, S., Zhang, K., & Wei, H. (2024). Balanced prioritized experience replay 
in off-policy reinforcement learning. Neural Computing and Applications, 36(25), 15721–
15737. https://doi-org.ez.xjtlu.edu.cn/10.1007/s00521-024-09913-6 

[8] Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J., & Whiteson, S. (2020). 
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. 

[9] Kallinteris, A., Orfanoudakis, S., & Chalkiadakis, G. (2024). A comprehensive analysis of agent 
factorization and learning algorithms in multiagent systems. Autonomous Agents & Multi-
Agent Systems, 38(2), 1-48. 

[10] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018). Counterfactual multi-
agent policy gradients. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1). 

[11] Yu, W., Wang, R., & Hu, X. (2023). Learning Attentional Communication with a Common 
Network for Multiagent Reinforcement Learning. Computational Intelligence & Neuroscience, 
1–12. https://doi-org.ez.xjtlu.edu.cn/10.1155/2023/5814420 

 

 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/103/20241138 

219 


