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Abstract. This article mainly discusses the application of the LightGBM model to predict water 
potability for a dataset containing multiple water quality features. The focus of the study is to 

use two popular model interpretability techniques: SHAP and LIME to explain the model's 

prediction results. The results show that SHAP can globally explain the feature importance of 

the entire dataset and provide a deep understanding of the features and model behavior, while 

LIME provides a detailed explanation of a single prediction through local linear approximation, 

which is easier to interpret and apply. This article also compares the strengths and limitations of 

SHAP and LIME in explaining the LightGBM model’s behavior, demonstrating their 

applicability and explanatory power in different contexts. In addition, this article also explores 

the actual application scenarios of water quality prediction and analyzes how interpretability 

improves model transparency and trust in this field. Through these analyses, the article provides 

practical suggestions on how to choose appropriate model interpretation methods in reality. 
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1.  Introduction 
Predicting the potability of water plays a vital role in protecting public health. As an important issue at 

national, regional, and local levels, it necessitates the use of machine learning models to quickly and 

accurately access water safety. 
With the development of computer technology, more advanced algorithms have been applied to 

water quality assessment. Models like LightGBM process continuous values through a histogram-based 

method, which improves training speed and is suitable for large-scale data sets. In contrast to traditional 

water quality assessment methods, which often rely on chemical analysis and expert judgment—
processes that are typically time-consuming and costly [1]—machine learning models can analyze vast 

amounts of water quality data to deliver fast and accurate predictions, providing essential support for 

public health protection. 
Machine learning models like LightGBM perform well in this field, but their complexity often makes 

them difficult to interpret. This paper explores the use of SHAP and LIME to enhance the interpretability 

of the LightGBM model on a well-trained water potability dataset. By comparing the two techniques, it 
aims to provide insights into which method is more effective in understanding model decisions, thereby 

helping to improve the transparency and credibility of model predictions [2]. 
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2.  Data Cleaning and LightGBM Model Training 

2.1.  Data Description 

The dataset used in this study contains multiple water quality indicators, such as pH, hardness, solid 

content, chloramine, and sulfate, which together determine the potability of water as shown in table 1 
and 2. 

Table 1. Dateset 

ph Hardness Solids Chloramines Sulfate Conductivity \ 

0 NaN 204.890455 20791.318981 7.300212 368.516441 564.308654 

1 3.716080 129.422921 18630.057858 6.635246 NaN 592.885359 

2 8.099124 224.236259 19909.541732 9.275884 NaN 418.606213 

3 8.316766 214.373394 22018.417441 8.059332 356.886136 363.266516 

4 9.092223 181.101509 17978.986339 6.546600 310.135738 398.410813 

 

Table 2. Dateset 

 Organic_carbon Trihalomethanes Turbidity Potability 

0 10.379783 86.990970 2.963135 0 

1 15.180013 56.329076 4.500656 0 

2 16.868637 66.420093 3.055934 0 

3 18.436524 100.341674 4.628771 0 

4 11.558279 31.997993 4.075075 0 

2.2.  Data preprocessing 
Data preprocessing was performed prior to training the model. First, the data were categorized into target 

variables and features. Missing values were then addressed by imputing the mean. The dataset was 

further split into training, validation, and test sets to facilitate model training, tuning, and final evaluation. 

Finally, in order to ensure the consistency of the data and enhance the training effect of the model, the 
feature data was standardized , which helped to speed up the convergence of the LightGBM model to 

ensure that the model can perform best on the data. 

2.3.  LightGBM Model Training 
In this study, the LightGBM model was used to perform a binary classification task for water 

applications. The preprocessed dataset was divided into a training set and a validation set, where the 

training set was used to train the model, and the validation set was employed to monitor the model’s 
performance and prevent overfitting [3]. The maximum number of training rounds was set to 200 rounds 

and the Early Stopping mechanism was enabled. When the loss on the validation set no longer improves 

within 10 rounds, model training will automatically stop to prevent model overfitting. 

[LightGBM] [Info] Number of positive: 785, number of negative: 1180 
[LightGBM] [Info] Total Bins 2295 

[LightGBM] [Info] Number of data points in the train set: 1965, number of used features: 9 

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.399491 -> initscore=-0.407586 
[LightGBM] [Info] Start training from score -0.407586 

Training until validation scores don't improve for 10 rounds 

[10] valid_0's binary_logloss: 0.609581 

[20] valid_0's binary_logloss: 0.592585 
[30] valid_0's binary_logloss: 0.590241 

Early stopping, best iteration is: 

[27] valid_0's binary_logloss: 0.58931 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 

DOI:  10.54254/2755-2721/104/20241154 

151 



 

 

In the training results, the model's loss (binary logloss) on the validation set gradually decreased and 

reached the optimal value of 0.58931 in the 27th round. At this point, the loss on the validation set no 

longer decreases significantly, so the training procedure stops early at round 30. 

Test Accuracy: 0.6600609756097561 
Test Precision: 0.60625 

Test Recall: 0.377431906614786 

Test F1-Score: 0.46522781774580335 
Test AUC-ROC: 0.6865997679022458 

The results show that the model performs relatively consistently on the test set, especially in terms 

of accuracy and precision. The accuracy is 0.6601, indicating that the model can correctly predict the 

applicability of water in 66% of cases. However, the recall is relatively low, indicating that the model 
has some deficiencies in identifying positive samples (drinkable water). This means that the model may 

be more inclined to conservatively predict samples as negative (undrinkable). 

 

Figure 1. ROC Curve 

The area under the ROC curve (AUC) is used as a performance measure of machine learning 
algorithms, and the ROC curve was used to evaluate the model's performance [4]. The closer the ROC 

curve is to the upper left corner, the better the model performs, which indicates that the model has better 

classification ability (Figure 1). 

3.  Interpretable Models 

With the widespread application of machine learning, especially in complex models such as deep neural 

networks, random forests, and gradient boosting trees (such as LightGBM), interpretability has become 

an important research area. These complex models are often called "black-box models" because their 
decision-making process is not intuitively understandable to humans [5]. In other words, models whose 

internal decision-making process is difficult to explain. These models are often composed of complex 

mathematical operations and contain a large number of parameters and feature interactions. In order to 
address issues such as model transparency and credibility, interpretability tools such as SHAP (Shapley 

Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) are employed to 

reveal the underlying principles of these black-box models, thereby facilitating greater understanding 
and trust in their decisions [6]. 

3.1.  SHAP Principle 

SHAP explanations, in particular, serve as a widely-used feature attribution mechanism in explainable 

AI. It explains the output of a machine learning model by calculating the contribution of each feature to 
the prediction result. The core idea of SHAP is to regard the output of the model as the payoff in a 

cooperative game and to distribute the contribution of each feature according to the Shapley value [7]. 

In game theory, the Shapley value is used to fairly distribute the total payoff in a cooperative game based 
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on the contribution of each participant. Applying this idea to machine learning models, features are 

regarded as "participants", the model's prediction results are regarded as "payoffs", and the SHAP value 

represents the contribution of each feature to the prediction result. SHAP values can explain a single 

prediction result and help understand the decision-making process of a specific instance. Therefore, 
SHAP can be applied to various machine learning models, including the LightGBM model we use. 

3.1.1.  Mathematical calculation principle of SHAP. SHAP value is calculated based on Shapley value, 

and the formula is:  

𝜙𝑖 = ∑
𝑆⊆𝑁∖{𝑖}

|𝑆|! ⋅ (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] 

The formula provides a method for calculating the contribution of each feature to the model’s 

prediction result. The calculation takes into account all possible feature combinations and averages them 
through weight coefficients, thereby ensuring the fairness and rationality of the formula calculation. 

 

Figure 2. SHAP Model Summary 

According to figure 2, which clearly shows the importance ranking of each feature in the model, 

Sulfate and pH are identified as the two features with the greatest impact on the model’s predictions, 

with their average SHAP values being significantly higher than those of other features. Analyzing the 
SHAP values allows for the identification of the key features influencing the prediction results, which 

in turn helps verify the model's validity and enhances its transparency. 

3.2.  LIME principle 

LIME stands for "locally interpretable model-independent explanation", which is a model-independent 
explanation method that aims to explain the local behavior of complex models by building simplified 

models. The core idea of LIME is to simulate the neighborhood data around the instance around these 

samples to help capture the behavior of the model in the local area [8]. In fact, it is to build a simplified 
linear model based on these perturbed samples to approximate the decision boundary of the complex 

model. Linear models, such as regression models, are employed to approximate the behavior of complex 

models in these localized areas. LIME assumes that in the local area, the linear model can well 
approximate the decision boundary of the complex model. The feature weights of the linear model 

explain the decision of the original complex model on this instance. Finally, a visual data representation 

is used to demonstrate the contribution of features to the prediction result for that instance. 

3.2.1.  Mathematical calculation principle of LIME. The calculation formula of LIME value is: 

𝜉(𝑥) = arg⁡𝑚𝑖𝑛
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) 
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The formula L(f,g,πx) represents the loss function between the original model f and the explanation 

model g, where πx is the weighting function of the perturbed samples in the neighborhood of sample x. 

And Ω(g) is to prevent the model from overfitting. Through this formula, LIME finds a simple linear 

model g in the local area of the complex model to approximate the behavior of the complex model f, 
and explains the prediction results of f by explaining the feature weights of g [9]. 

In this study, LIME is applied to explain the local behavior of the LightGBM model in the water 

potability prediction task. Specifically, LIME is applied to several key prediction samples, where 
perturbed samples are generated, and linear models are constructed to explain the prediction results of 

each sample. LIME can clearly show how the prediction of a specific water sample is affected by 

different water quality characteristics. For example, LIME may show that in the prediction of a non-

drinkable water, "high dissolved solids content" is the main reason why the sample is classified as non-
drinkable. For a water sample predicted to be drinkable, LIME can show how "moderate pH" and "low 

hardness" affect the model's prediction results, thereby explaining why the water sample is considered 

drinkable. 

 

Figure 3. (From Left to Right 3.1, 3.2, 3.3): LIME Model Summary 

From left to right, Figure 3.1 shows the model predicting that Class 1 (drinkable) has a 75% 

probability. Next, Figure 3.2 shows the contribution of each feature to the model prediction. The closer 

to the top, the greater the contribution. Finally, Figure 3.3 gives the specific feature values, such as a 
Sulfate value of 0.09 and a Hardness value of -0.56. 

4.  Comparative analysis of SHAP and LIME 

In the study of interpretability of machine learning models, SHAP and LIME are two widely used 

methods. While both aim to explain the prediction process of complex models, they differ significantly 
in their methodologies, particularly regarding global and local interpretability [10]. 

4.1.  SHAP's Global Interpretability Theory 

The SHAP model visualization highlights the impact of key features on prediction results. From figure 
4, pink points indicate a positive effect (increasing the predicted value), while blue points show a 

negative effect (decreasing the predicted value). Top features like "Sulfate" and "ph" exhibit both 

positive and negative impacts, varying across observations. Middle features like "Organic_carbon" have 
less impact, with more concentrated point distributions. Bottom features such as "Turbidity" and 

"Conductivity" contribute the least, with most impacts close to zero, indicating minimal influence on 

the model's predictions. 
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Figure 4. Impact Between SHAP Value and Feature Value 

 

Figure 5. Relationship With SHAP Value for Sulfate 

Figure 5 shows a positive relationship where higher Sulfate values (red points on the right) increase 

the probability of water being drinkable, while lower Sulfate values (blue points on the left) decrease 

this probability. The greatest impact occurs when Sulfate values are below -1 and above 1, indicating 
high sensitivity in these ranges. This visualization helps to understand the model's response to different 

Sulfate levels and allows for more targeted data collection and model adjustments. 

 

Figure 6. SHAP Force Plot 

According to the force_plot (Base-value explanations) of SHAP in Figure 6, the detailed feature 

contributions for a single prediction are presented, with each feature’s influence on the final prediction 

value displayed as an arrow. The balance between positive contributions (red) and negative contributions 
(blue) determines the final prediction value [10]. 

4.2.  Local Interpretability of LIME 

The interpretability of the LIME model is clearly shown through its principle. The model predicts a 75% 
probability that this sample belongs to Class 1, indicating high confidence that the water is drinkable. 

The feature contribution graph reveals that features like "Sulfate" and "Hardness" support Class 1, while 

"Chloramines" and "Solids" lean toward Class 0. This demonstrates the model's ability to evaluate both 

individual feature effects and their interactions. For example, higher "Chloramines" points to Class 0, 
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while lower "Hardness" favors Class 1. This local explanation clarifies the model's decision logic for 

this specific prediction. 

4.3.  Comparison and discussion of results 

 

Figure 7. LIME and SHAP Model Feature Contributions 

According to Figure 7, the different emphases of the two interpretation methods, LIME and SHAP, in 

evaluating feature contributions can be observed. For some key features, such as Sulfate and Hardness, 

the contribution values obtained by the two methods are relatively close, indicating that they have a 
relatively consistent understanding of these features, and also reflecting that the importance of these 

features in the model is relatively clear. However, other features (such as Chloramines and Conductivity) 

show obvious differences. It can be noticed that SHAP assigns significantly higher contribution values 

to these features compared to LIME. This difference may be due to the global consistency of SHAP, 
which measures the contribution of each feature by combining the interaction effects between features, 

while LIME focuses more on local models and may be more inclined to evaluate the impact of each 

feature independently of other features when interpreting [2]. 

 

Figure 8. LIME vs SHAP Radar Chart 

A radar chart (Figure 8) was created to compare SHAP’s and LIME’s contributions across different 

features, offering a more comprehensive perspective on model interpretation. It can be clearly seen that 
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SHAP contributes much more to some features (such as ph) than LIME, showing that SHAP tends to 

give these features higher importance. This difference reflects that SHAP considers the interaction 

effects of features, allowing it to capture the complex effects of features globally, while LIME may show 

lower sensitivity to these features [11]. In addition, the more evenly distributed blue area of LIME shown 
in the figure illustrates its conservatism and stability in local interpretation, while the orange area of 

SHAP reveals that it is more extensible and dynamic in global interpretation. This comparison highlights 

the respective strengths and limitations of SHAP and LIME. LIME is more effective in providing 
concise and stable local explanations, while SHAP performs better in capturing the importance and 

complex interactions of global features. 

5.  Discussion 

In the wide application of machine learning, interpretability has become a key area. Interpretable models 
not only improve transparency and credibility, but also help practitioners understand the logic of model 

decisions, especially in key areas such as medicine, finance, and justice, to ensure the security and 

compliance of models [5]. Interpretability also helps researchers identify biases, optimize performance, 
and enables users to better understand the complex relationship between data and features, so as to make 

more informed decisions. 

As mainstream model interpretation methods, SHAP and LIME each have unique advantages. SHAP 
provides globally consistent feature importance scores through its game theory-based framework, which 

is suitable for global understanding of model behavior; while LIME excels in detailed local explanations 

of individual predictions [11]. In the future, SHAP may focus on improving computational efficiency 

and adapting to complex models, while LIME can optimize in handling nonlinear feature interactions 
[12]. As the demand for interpretability grows, these methods may be further integrated in both theory 

and practice to advance model transparency and credibility. 

6.  Conclusion 
In modern machine learning applications, interpretability has changed from an option to a necessity. 

This study used two maintream models, SHAP and LIME, to elucidate the decision-making process of 

a water quality classification model. Although SHAP demonstrates its strong ability to capture complex 

interactions between features and global feature importance, analysis and experimental results suggest 
that LIME may offer more practical advantages. LIME's flexibility and easy-to-understand local 

explanations make it more practical in many scenarios, and from the model results of LIME, LIME is 

more stable and balanced than SHAP, so LIME will make it a better choice in most applications. In the 
future, as the requirements for model transparency continue to increase, explanation methods such as 

SHAP and LIME will continue to develop to cope with more complex models and data sets. Through 

continuous innovation and optimization, these explanation methods can provide robust capabilities for 
understanding, trusting, and improving machine learning models, ultimately advancing the field of 

explainable AI. The rational use of these explanation methods in practical applications can not only 

improve the reliability and interpretability of models, but also lay the foundation for safer and more 

compliant AI applications. 
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