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Abstract. The rapidly growing number of connected devices continuously produces massive 

amounts of heterogeneous data, posing challenges to data privacy and security when leveraging 

them to train the high-quality big model. Federated learning, which enables numerous users to 

train a global model without cooperatively exchanging data, has emerged as a viable alternative.  

Though achieving significant progress, existing federated learning methods still struggle with 

large communication volumes, especially when the local devices only have limited computing 

and communication capabilities. To alleviate the efficiency issue, this paper compares the effect 

of three compression methods in promoting the training of federated learning models, including 

pruning, quantization, and knowledge distillation. The findings reveal that these methods reduce 
resource consumption while maintaining high model performance. Combining the pruning, 

quantization, and knowledge distillation technology through sequential application and 

parameter aggregation helps balance the model size and performance. Our cascading lightweight 

strategy, which preserves each method's unique edge while promoting deeper collaboration 

between them, has been shown beneficial through extensive testing. 

Keyword: Federated learning; deep learning, pruning, quantization, knowledge distillation. 

1.  Introduction  

In recent years, the volume of data has increased tremendously due to the rapid development and 
popularization of Internet of Things (IoT) devices, sensors, and smart terminals. Although these massive 

data provide solid data support for the construction of various artificial intelligence models, it is very 

difficult to centrally process these data with different structures, which poses challenges to data privacy 
and security [1]. Federated learning, a distributed machine learning paradigm that addresses these 

problems, enables several users to work together to train a global model without sharing data, 

guaranteeing security and anonymity while utilizing distributed data resources [2].  
Academics and industry alike are paying more and more attention to federated learning, which has 

made great strides in a number of applications. The design of distributed optimization algorithms works 

as the cornerstone of federated learning. Federated Averaging (FedAvg) weight averages the parameter 

gradient of selected local clients to update the center server. To alleviate the problem of data 
heterogeneity (non-iid data distribution) in FedAvg, Federated Proximal (FedProx) further introduces a 

regularization term in the standard FedAvg to control the update of the client's local model, making it 
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closer to the global model, thereby improving the training effect of the model in the case of uneven data 

distribution. Though these efforts have advanced the performer of federated learning,  the large 

communication volumes remain an open issue, leading to low training efficiency, especially given the 
limited computing and communication capabilities of many devices. Motivated by the swift 

advancement of lightweight models, scholars have suggested utilizing knowledge distillation, 

quantization, and pruning techniques to enhance the effectiveness of federated learning. These methods 
aim to reduce the model's complexity and communication volume, thus enhancing the overall efficiency 

of federated learning. Specifically, pruning reduces the model size by eliminating insignificant neural 

network connections; quantization reduces computational and storage costs by lowering the precision 

of model parameters; and knowledge distillation compresses the model by transferring the knowledge 
from a larger model to a smaller one [3-5].  

In this paper, we are committed to exploring the role of representative lightweight technologies in 

promoting the learning efficiency of federated learning models, which can provide a decision-making 
basis for method selection in practical applications. Specifically, we not only embed pruning, 

quantization, and knowledge distillation modules separately in the classic reinforcement learning 

network but also combine the above compression technologies in the unified model. By quantitatively 
comparing the accuracy, loss value, delay, and transmission ratio of different models, we determine the 

best combination to balance the model performance and learning efficiency. Our cascaded lightweight 

technique has been shown through extensive trials to be effective in reducing the training overhead of 

federated learning. To summarize, our main contribution includes:  
(1) The optimization effect of different lightweight technologies is quantitatively studied on the 

learning efficiency of federated learning models, providing a decision-making basis for algorithm 

selection in large-scale practical applications.  
(2) The interaction effect of different lightweight technologies are further explored, where pruning, 

quantization and knowledge distillation can complement each other to achieve the best balance between 

model accuracy and speed.  

(3) A number of tests are conducted to confirm that our combined lightweight strategy works. 

2.  Related Work  

2.1.  Pruning 

Pruning, which can be divided into weight pruning and structured pruning, is a model compression 
approach that includes cutting out unnecessary neural network connections to minimize the size and 

computing burden of the model. He et al. [5] proposed a convolutional neural network (CNN) 

compression method that combines pruning with knowledge distillation. This approach effectively 
reduces parameters and computations while maintaining model performance. The combination of 

pruning with other techniques, such as knowledge distillation, has been shown to enhance the overall 

efficiency of model compression [6]. 

2.2.   Quantization 
Quantization reduces computational and storage costs by lowering the precision of model parameters. 

Polino et al. [4] demonstrated that combining quantization with knowledge distillation allows for 

significant model compression without substantial performance loss. This method reduces the model's 
complexity and communication volume, thereby improving the overall efficiency of federated learning. 

Liu et al. [7] further explored the synergy of quantization and knowledge distillation, highlighting its 

potential to enhance controllability and efficiency in the compression process. 

2.3.  Knowledge Distillation 

Knowledge distillation entails moving knowledge from a larger model to a smaller one in order to 

achieve compression. Li et al. [3] introduced the PQK method, which combines pruning, quantization, 

and knowledge distillation to enhance compression efficiency. Cheng et al. [8] conducted a detailed 
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analysis of knowledge distillation's application in model compression, discussing the impact of different 

hyperparameter settings and model architectures on the compression effect. 

2.4.  Combined Compression Techniques 
The limitations of single compression methods have driven researchers to explore combinations of these 

techniques for better results. For instance, combining pruning and knowledge distillation significantly 

reduces model size and improves efficiency [9-10]. Similarly, previous work has shown the potential of 
integrating quantization with knowledge distillation to enhance compression efficiency without 

compromising performance [11-12]. The integrated application of pruning, quantization, and knowledge 

distillation, as demonstrated by Zhang et al. [13], significantly improves model compression efficiency, 

particularly in IoT applications. The comprehensive analysis of recent literature [14-15] underscores the 
critical role of model compression in enhancing the efficiency of federated learning. Single compression 

techniques often fall short in balancing compression efficiency and model performance. Therefore, 

combined methods have emerged as a more robust approach. By integrating multiple techniques, it is 
possible to leverage their complementary strengths, resulting in models that are both compact and high-

performing. This study aims to systematically compare these methods to identify the optimal 

combination, providing valuable insights for the application of federated learning in IoT data processing. 

3.  Method 

3.1.  Pruning  

In this section, we first review the classic weight pruning technique used in this study. Its basic process 

and algorithm pseudo code are shown in Figure 1 and Table 1 respectively. For a given layer 𝑙 with the 

weight matrix  Wl = (

w11 ⋯ w1n

⋮ ⋱ ⋮
wn1 ⋯ wnn

), we calculate the threshold of weight according to the pruning 

percentage p, as:  

τ =  percentile(|Wl |, p)         (1) 

We then generate mask matrix Ml so that the weights with absolute values greater than the threshold 

can remain unchanged while other weights are reset to zero, as: 

Mij = {
1, if|wij| > τ

0, otherwise
         (2) 

The updated weight matrix Wl is the principal element product of the original weight matrix and the 

mask matrix.  

Wl
, = Wl ⨀ Ml         (3) 

Where ⨀ represents element-by-element product.  
 

 

Figure 1. Visualization of pruning process. 
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Table 1. Pseudo code of pruning algorithm 

Algorithm 1: Pruning Algorithm. P represents the list of parameters to prune, w is the parameter 

tensor,  τ  is the computed threshold,  m  is the generated mask, and wpruned   is the pruned 

parameter tensor. 

Input: model, pruning_ratio 
Output: pruned_model 

prune(model, pruning_ratio) 

P←[(model.fc,’weight’)] 

for (module, param)∈ P do 

     w←module[param] // retrieve parameter tensor 

     τ←threshold(∣w∣, pruning_ratio) 

     m← w > τ // generate mask 

     wpruned←w⋅m // apply mask 

    module[param]←wpruned// update parameter 

    end for 
    return model 

3.2.  Quantization  

Similar to the settings in pruning, given weight matrix Wl of  layer l, the quantization algorithm calculate 

the maximum absolute value 𝑚𝑎𝑥 _𝑣𝑎𝑙 of the elements in the weight matrix, as:  

max _val =  max (|Wl |)       (4) 

Based on the  maximum absolute value, the quantization scale 𝑆 will be calculated, as: 

S =
2num_bits−1

max _val
         (5) 

where num_bits is the bit width of quantization. The quantized weight matrix 𝑊𝑙
𝑄

 can be defined as:  

Wl
Q

= ⌊Wl × S⌉ ×
1

S
       (6) 

Where ⌊∙⌉ means rounding. The basic process and algorithm pseudo code of classical quantization 

algorithm are shown in Figure 2 and Table 2 respectively. 

 

Figure 2. Visualization of quantization process. 

Table 2. Pseudo code of quantization algorithm 

Algorithm 2 Quantization Algorithm. 𝑄 represents the quantized model, and 𝐿 denotes the set of 

linear layers in the model. 

Input: model 

Output: quantized_model 

1. quantize(model) 

2. Set model to evaluation mode 

3. 𝑄 ← dynamically quantize model(model, { 𝐿 }, dtype=qint8) 

4. return 𝑄  

5. end function 
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3.3.  Knowledge distillation  

As shown in Figure 3, the knowledge distillation module is implemented as a teacher-student framework. 

The pseudo code of Knowledge Distillation Algorithm is illustrated in Table 3. Given the input data x, 

the teacher model ft produces the output zt , as:  

zt = ft(x)         (7) 

We apply the temperature scale T to the output of the teacher model to obtain the soft label qt, as: 

q
t

= softmax (
zt

T
) =

exp (
zi
T

)

∑ exp (
zj

T
)j

       (8) 

Given the same input data x, the student model fs produces the output zs using the equation (7). The 

cross entropy loss L serves as the loss function for the student model, which is trained using the 
instructor model's soft labels.  

L =  CrossEntropyLoss(zs , qt)      (8) 

The student model parameters are optimized using the backpropagation algorithm, as: 

θs =  θs −  η∇θL        (9) 

Table 3. The pseudo code of knowledge distillation algorithm 

Algorithm 3 Knowledge Distillation Algorithm. 𝑆 represents the student model, 𝑇 represents 

the teacher model, 𝐷 denotes the data loader, 𝑂 is the optimizer, ℓ is the loss function, 𝛼 is the 

weighting factor, and 𝑇′ is the temperature. 

Input: student_model, teacher_model, data_loader, optimizer, loss_fn, alpha, temperature 

Output: average_loss 

1. distill(𝑆, 𝑇, 𝐷, 𝑂, ℓ, 𝛼, 𝑇′)  
2.  Set S to training mode 

3.  Set T to evaluation mode 

4.  𝐿cumulative ← 0 

5.  for each (x, y)∈D do 

6.       Move x, y to the computation device 

7.        O.zero_grad() 

8.        𝑦𝑠 ← S(x)//student output 

9.        with no gradient computation do 

10.             𝑦𝑡 ←T (x) //teacher output 

11.         𝑃𝑡← softmax(
𝑦𝑡

𝑇
)//soft target 

12.         𝑃𝑠← softmax(
𝑦𝑠

𝑇
)//soft  output 

13.         𝐿𝑠𝑜𝑓𝑡  ←ℓ(𝑃𝑠𝑃𝑡)⋅( 𝛼 ⋅ 𝑇2)  

14.         𝐿ℎ𝑎𝑟𝑑  ←ℓ(𝑦𝑠𝑦𝑡)⋅(1- 𝛼) 

15.         𝐿𝑡𝑜𝑡𝑎𝑙 ← 𝐿𝑠𝑜𝑓𝑡  +  𝐿ℎ𝑎𝑟𝑑  

16.         𝐿𝑡𝑜𝑡𝑎𝑙.backward() 

17.         O.step() 

18.          𝐿cumulative ← 𝐿cumulative + 𝐿𝑡𝑜𝑡𝑎𝑙     

19.   end for 𝐿cumulative 

20.   𝐿𝑎𝑣𝑔 ← 
𝐿cumulative 

|𝐷|
//average loss 

21.   return 𝐿𝑎𝑣𝑔 

22.   end function 
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Figure 3. The structure of knowledge distillation. 

3.4.  Mode Construction            
In this study, we systematically analyzed and compared the issues of communication and model 

compression in Federated Learning. First, we built a baseline model based on the Fashion-MNIST 

dataset using a fully connected neural network. Next, we applied the three compression methods—
pruning, quantization, and knowledge distillation—individually to the baseline model and evaluated 

their impact on the model's accuracy, size, and computation latency. To be more precise, quantization 

lowers computation and storage costs by decreasing the precision of model parameters, pruning reduces 

model parameters by eliminating unnecessary neural network connections, and knowledge distillation 
compresses the model by transferring knowledge from a larger teacher model to a smaller student model. 

After completing individual comparisons, we explored the combination of these three compression 

methods to identify the optimal strategy for maximizing the efficiency of Federated Learning. In this 
combined strategy, we applied pruning, quantization, and knowledge distillation in sequence. First, we 

pruned the model to significantly reduce the number of parameters, followed by quantization of the 

pruned model to further reduce computational and storage demands. Finally, we applied knowledge 

distillation to transfer the teacher model's knowledge to a smaller student model, optimizing its 
performance. After each training round, we used state dictionary aggregation to average the parameters 

of multiple models, constructing a stable and efficient global model. 

4.  Experiment 

4.1.  Dataset       

The experiment leverages the Fashion-MNIST dataset, a commonly regarded standard for picture 

classification tasks. Fashion-MNIST comprises 70,000 28x28 grayscale photos organized into 10 
categories, with 7,000 images per category. The training set comprises 60,000 photos, whereas the test 

set includes 10,000 images. This dataset is ideal for validating the performance and applicability of 

model compression methods [16]. 

4.2.  Implement details 
A simple neural network model, SimpleNN, is used as the baseline model in this experiment. SimpleNN 

consists of three fully connected layers: the first layer converts the 28x28 pixel input image into a 128-

dimensional feature vector, the second layer compresses this feature vector to 64 dimensions, and the 
third layer produces a 10-category output from the 64-dimensional feature vector. Despite its simple 

structure, SimpleNN achieves good performance on the Fashion-MNIST dataset and serves as a suitable 

benchmark for studying model compression methods [17].  
According to Table 4, an appropriate set of hyperparameters was selected for the experiments to 

balance the training speed and performance of the model. Specifically, the learning rate was set to 0.01, 

which usually achieves a good balance between training stability and convergence speed. The batch size 

was set to 64, ensuring computational efficiency and providing the model with enough samples for 
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effective training. The momentum parameter was set to 0.9, helping to accelerate gradient descent and 

suppress oscillations. 

Table 4. Variable Description Table 

Parameter name Value Description 

NUM_MODELS 3 The number of models trained simultaneously 

LEARNING_RATE 0.01 
Learning rate, which determines the step size of 

model parameter updates 

BATCH_SIZE 64 The number of samples in each training batch 

MOMENTUM 0.9 
Momentum parameter, which accelerates gradient 

descent and suppresses oscillation 

PRUNE_AMOUNT 0.2 
Pruning ratio, which indicates that 20% of the 

weights are removed each time 

QUANTIZE_DTYPE torch.qint8 
Quantized data type, which quantizes model 

parameters into 8-bit integers 

DISTILL_ALPHA 0.5 

The weight coefficient of distillation loss, which 

indicates the balance between the teacher model 

and the student model loss 

DISTILL_TEMPERATURE 2.0 
Distillation temperature, which controls the degree 

of softening of the probability distribution 

NUM_EPOCHS 20 Number of training rounds 

 

For model compression, the pruning ratio was set to 20%, meaning that 20% of the weights were 

removed during each pruning iteration. This aimed to reduce model complexity while maintaining 

performance. During quantization, model parameters were converted into 8-bit integers, significantly 
reducing storage requirements and computational load. In knowledge distillation, the weight coefficient 

for distillation loss was set to 0.5 to balance the losses of the teacher and student models, and the 

distillation temperature was set to 2.0, as an appropriate temperature can maximize the distillation effect. 
The number of training epochs was set to 20 to ensure that training was finished within a reasonable 

time while giving the model sufficient opportunities to learn the data's characteristics. The purpose of 

selecting these hyperparameters was to maximize the efficiency of training and inference while ensuring 
model performance. Experimental verification showed that these settings effectively support the 

implementation of model compression methods such as pruning, quantization, and knowledge 

distillation. 

4.3.  Experimental Results 
To test the effect of different lightweight technologies on model performance, we quantitatively 

analyzed the accuracy, loss, latency and Transmission ratio of different models, whose findings are 

displayed in Table 5. The original model serves as the baseline with the highest accuracy at 93.84%, the 
lowest loss at 2.76, the delay of 4.21, and the transmission ratio of 1. In comparison, the Prune technique 

reduces the model's complexity, resulting in a slight drop in accuracy to 90.77% and an increase in loss 

to 4.59. However, it improves the delay to 3.82 and reduces the transmission ratio to 0.86. The 
Quantification method shows a similar pattern, achieving an accuracy of 91.06% and a loss of 4.88, with 

delay and transmission ratio values of 3.97 and 0.25, respectively. Knowledge Distillation leads to the 

lowest accuracy among all techniques at 88.65%, with a minimal increase in loss to 2.81, suggesting a 

significant simplification of the model. The delay slightly improves to 4.06, and the transmission ratio 
drops to 0.45.  

When combining techniques, the model 5 (prune+quantification) yields an accuracy of 92.21% and 

a loss of 5.69, with the lowest delay recorded at 3.05 and a reduced transmission ratio of 0.25. The 
combination of prune and knowledge distillation (Model 6) maintains a comparable accuracy of 90.84% 

and a loss of 3.29, with a delay of 3.23 and a transmission ratio of 0.45. The combination of 
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quantification and knowledge distillation technique  (Model 7) shows an accuracy of 90.91%, a loss of 

3.32, a delay of 4.05, and the lowest transmission ratio at 0.11. Finally, the combination of all three 

methods (Model 8) results in a balanced performance with an accuracy of 91.77%, a loss of 4.17, a delay 
of 3.06, and a transmission ratio of 0.11. All the results highlight the trade-offs between accuracy, model 

complexity, and resource efficiency across different model modifications. 

Table 5. Comparison of quantitative experimental results of different methods 

Model Prune Quantification 
Knowledge 
Distillation 

Accuracy Loss Delay 
Transmission 

ratio 

1    93.84% 2.76 4.21 1.00 

2 √   90.77% 4.59 3.82 0.86 

3  √  91.06% 4.88 3.97 0.25 

4   √ 88.65% 2.81 4.06 0.45 

5 √ √  92.21% 5.69 3.05 0.25 

6 √  √ 90.84% 3.29 3.23 0.45 

7  √ √ 90.91% 3.32 4.05 0.11 

8 √ √ √ 91.77% 4.17 3.06 0.11 

4.4.  Convergence Analysis 

Figure 4 demonstrates varying trends in accuracy across different model optimization techniques as the 

rounds progress. The original model shows a consistent increase in accuracy throughout all rounds, 
achieving high performance without any optimizations. Techniques such as pruning and quantization 

impact the model's accuracy to different extents. Pruning generally leads to a slight decrease in accuracy, 

while quantization has a more significant impact, especially in the initial rounds, leading to greater 

fluctuations. Knowledge distillation starts with a lower accuracy but displays a stable upward trend, 
indicating moderate improvements compared to other individual techniques. The combination of 

pruning and quantization or pruning and knowledge distillation, generally achieve better accuracy than 

individual techniques, while the combination of all three techniques usually performs well, although it 
may not always surpass the accuracy of the original model. 

 

Figure 4. Model Accuracy and Loss Comparison Across Rounds. 
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In terms of loss convergence, the original model exhibits a steady reduction in loss, indicating a 

consistent decrease in error rate over the rounds. Pruning shows a slower reduction in loss compared to 

the original model, suggesting that while it can improve efficiency, it may initially lead to a higher error 
rate. Quantization exhibits a similar trend to pruning, with relatively slower loss reduction, highlighting 

the trade-off between reducing model size and increasing error. Knowledge distillation demonstrates a 

more rapid convergence in loss compared to pruning and quantization alone, suggesting that transferring 
knowledge from a larger model can effectively reduce errors. Combined methods, particularly the 

combination of pruning, quantization, and knowledge distillation, show a good balance between 

accuracy and loss reduction.  

4.5.  Delay and Transmission Ratio Analysis 
Figure 5 presents different characteristics of delay across various models. The original model exhibits 

the highest delay, indicating the longest processing or transmission time, likely due to its complexity 

and lack of optimizations. The pruning technique shows a significant reduction in delay, demonstrating 
that reducing model complexity can improve data processing speed. Quantization also results in a lower 

delay compared to the original model, although it is slightly higher than pruning, suggesting that while 

quantization reduces model size, it may sometimes increase processing time. The knowledge distillation 
method also shows low delay, similar to pruning, indicating that model simplification and knowledge 

transfer effectively reduce processing time. Among the combined methods, the combination of pruning 

and quantization notably lowers delay, highlighting the synergistic effect of these two optimization 

techniques in further reducing processing time. Overall, all optimization techniques effectively reduce 
delay, enhancing the model's efficiency. 

The transmission ratio reflects the efficiency of data transmission, with lower values indicating 

higher compression or transmission efficiency. The bar chart shows that the original model has a 
transmission ratio of 1, serving as a baseline. The pruning method significantly reduces the transmission 

ratio, indicating improved transmission efficiency by eliminating redundant data in the model. 

Quantization leads to a substantial reduction in the transmission ratio, demonstrating its superior 

performance in data compression. The knowledge distillation method also lowers the transmission ratio, 
though to a lesser extent, indicating its primary optimization impact is in reducing model complexity 

rather than data size. In the combined methods, especially the combination of pruning, quantization, and 

knowledge distillation, the transmission ratio reaches the lowest values, indicating that the joint 
application of these techniques maximizes data compression efficiency.  

 

Figure 5. Delay and Transmission Ratio Comparison Across Models. 
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5.  Discussion 

The previously described experimental findings show how various optimization strategies, including 

quantization, pruning, and knowledge distillation, can improve model performance, especially with 
regard to accuracy and loss. However, the significant impact of knowledge distillation on accuracy might 

indicate deficiencies in the SimpleNN (simple neural network) architecture, either in network design or 

the knowledge transfer process. This could be due to the overly simplistic structure of the SimpleNN 
model, which may fail to effectively capture and represent the complex knowledge conveyed by the 

teacher model. We also notice that the configuration of temperature parameters and loss function design 

involved in the knowledge distillation process may prevent the student model from fully learning the 

essential content from the teacher model, thus affecting the final accuracy. Another noteworthy 
phenomenon is that the combination of pruning and quantization, while achieving excellent performance 

in terms of accuracy, also results in the highest loss. This could be because, in the SimpleNN architecture, 

pruning and quantization lead to extreme compression of model parameters, particularly considering the 
already limited number of parameters in this model. Such compression might result in the loss of crucial 

information. Specifically, the simplification of floating-point representation during quantization and the 

removal of important connections during pruning can increase model errors, thereby raising the loss. 
Future research will examine the applicability of these compression strategies to a larger range of 

datasets and architectures, as this study only used the Fashion-MNIST dataset and a particular neural 

network architecture. At the same time, introducing more advanced hyperparameter optimization 

methods to fine-tune the balance between compression and performance is also a direction worth 
exploring, especially using the powerful non-deformation transformation capabilities of deep 

convolutional networks to model deep combinations between different methods. In addition, in order to 

further improve the efficiency and applicability of the model in resource-constrained environments, we 
will also consider federated learning collaboration between different AI chips. 

6.  Conclusion 

This study evaluated several model compression strategies, including pruning, quantization, and 

knowledge distillation, and assessed their individual and combined effects on model performance and 
efficiency. The original model, without any compression, showed the highest accuracy and best 

performance across all metrics. However, its large size resulted in the highest latency and transmission 

ratio, making it less suitable for practical applications where resource consumption is a critical factor. 
We discovered that the combination of pruning, quantization, and knowledge distillation performed the 

best overall after examining the effects of different model compression strategies. This combination 

preserved high accuracy and minimal loss while also successfully reducing the model's size and 
computational resource requirements. 
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