

Optimizing Federated Learning Efficiency: A Comparative

Analysis of Model Compression Techniques for

Communication Reduction

Shida Yan

Viterbi School of Engineering, University of Southern California, Los Angeles, USA

xiaomingli@email.com

Abstract. The rapidly growing number of connected devices continuously produces massive

amounts of heterogeneous data, posing challenges to data privacy and security when leveraging

them to train the high-quality big model. Federated learning, which enables numerous users to

train a global model without cooperatively exchanging data, has emerged as a viable alternative.

Though achieving significant progress, existing federated learning methods still struggle with

large communication volumes, especially when the local devices only have limited computing

and communication capabilities. To alleviate the efficiency issue, this paper compares the effect

of three compression methods in promoting the training of federated learning models, including

pruning, quantization, and knowledge distillation. The findings reveal that these methods reduce
resource consumption while maintaining high model performance. Combining the pruning,

quantization, and knowledge distillation technology through sequential application and

parameter aggregation helps balance the model size and performance. Our cascading lightweight

strategy, which preserves each method's unique edge while promoting deeper collaboration

between them, has been shown beneficial through extensive testing.

Keyword: Federated learning; deep learning, pruning, quantization, knowledge distillation.

1. Introduction

In recent years, the volume of data has increased tremendously due to the rapid development and
popularization of Internet of Things (IoT) devices, sensors, and smart terminals. Although these massive

data provide solid data support for the construction of various artificial intelligence models, it is very

difficult to centrally process these data with different structures, which poses challenges to data privacy
and security [1]. Federated learning, a distributed machine learning paradigm that addresses these

problems, enables several users to work together to train a global model without sharing data,

guaranteeing security and anonymity while utilizing distributed data resources [2].
Academics and industry alike are paying more and more attention to federated learning, which has

made great strides in a number of applications. The design of distributed optimization algorithms works

as the cornerstone of federated learning. Federated Averaging (FedAvg) weight averages the parameter

gradient of selected local clients to update the center server. To alleviate the problem of data
heterogeneity (non-iid data distribution) in FedAvg, Federated Proximal (FedProx) further introduces a

regularization term in the standard FedAvg to control the update of the client's local model, making it

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/107/20241215

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

107

closer to the global model, thereby improving the training effect of the model in the case of uneven data

distribution. Though these efforts have advanced the performer of federated learning, the large

communication volumes remain an open issue, leading to low training efficiency, especially given the
limited computing and communication capabilities of many devices. Motivated by the swift

advancement of lightweight models, scholars have suggested utilizing knowledge distillation,

quantization, and pruning techniques to enhance the effectiveness of federated learning. These methods
aim to reduce the model's complexity and communication volume, thus enhancing the overall efficiency

of federated learning. Specifically, pruning reduces the model size by eliminating insignificant neural

network connections; quantization reduces computational and storage costs by lowering the precision

of model parameters; and knowledge distillation compresses the model by transferring the knowledge
from a larger model to a smaller one [3-5].

In this paper, we are committed to exploring the role of representative lightweight technologies in

promoting the learning efficiency of federated learning models, which can provide a decision-making
basis for method selection in practical applications. Specifically, we not only embed pruning,

quantization, and knowledge distillation modules separately in the classic reinforcement learning

network but also combine the above compression technologies in the unified model. By quantitatively
comparing the accuracy, loss value, delay, and transmission ratio of different models, we determine the

best combination to balance the model performance and learning efficiency. Our cascaded lightweight

technique has been shown through extensive trials to be effective in reducing the training overhead of

federated learning. To summarize, our main contribution includes:
(1) The optimization effect of different lightweight technologies is quantitatively studied on the

learning efficiency of federated learning models, providing a decision-making basis for algorithm

selection in large-scale practical applications.
(2) The interaction effect of different lightweight technologies are further explored, where pruning,

quantization and knowledge distillation can complement each other to achieve the best balance between

model accuracy and speed.

(3) A number of tests are conducted to confirm that our combined lightweight strategy works.

2. Related Work

2.1. Pruning

Pruning, which can be divided into weight pruning and structured pruning, is a model compression
approach that includes cutting out unnecessary neural network connections to minimize the size and

computing burden of the model. He et al. [5] proposed a convolutional neural network (CNN)

compression method that combines pruning with knowledge distillation. This approach effectively
reduces parameters and computations while maintaining model performance. The combination of

pruning with other techniques, such as knowledge distillation, has been shown to enhance the overall

efficiency of model compression [6].

2.2. Quantization
Quantization reduces computational and storage costs by lowering the precision of model parameters.

Polino et al. [4] demonstrated that combining quantization with knowledge distillation allows for

significant model compression without substantial performance loss. This method reduces the model's
complexity and communication volume, thereby improving the overall efficiency of federated learning.

Liu et al. [7] further explored the synergy of quantization and knowledge distillation, highlighting its

potential to enhance controllability and efficiency in the compression process.

2.3. Knowledge Distillation

Knowledge distillation entails moving knowledge from a larger model to a smaller one in order to

achieve compression. Li et al. [3] introduced the PQK method, which combines pruning, quantization,

and knowledge distillation to enhance compression efficiency. Cheng et al. [8] conducted a detailed

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/107/20241215

108

analysis of knowledge distillation's application in model compression, discussing the impact of different

hyperparameter settings and model architectures on the compression effect.

2.4. Combined Compression Techniques
The limitations of single compression methods have driven researchers to explore combinations of these

techniques for better results. For instance, combining pruning and knowledge distillation significantly

reduces model size and improves efficiency [9-10]. Similarly, previous work has shown the potential of
integrating quantization with knowledge distillation to enhance compression efficiency without

compromising performance [11-12]. The integrated application of pruning, quantization, and knowledge

distillation, as demonstrated by Zhang et al. [13], significantly improves model compression efficiency,

particularly in IoT applications. The comprehensive analysis of recent literature [14-15] underscores the
critical role of model compression in enhancing the efficiency of federated learning. Single compression

techniques often fall short in balancing compression efficiency and model performance. Therefore,

combined methods have emerged as a more robust approach. By integrating multiple techniques, it is
possible to leverage their complementary strengths, resulting in models that are both compact and high-

performing. This study aims to systematically compare these methods to identify the optimal

combination, providing valuable insights for the application of federated learning in IoT data processing.

3. Method

3.1. Pruning

In this section, we first review the classic weight pruning technique used in this study. Its basic process

and algorithm pseudo code are shown in Figure 1 and Table 1 respectively. For a given layer 𝑙 with the

weight matrix Wl = (

w11 ⋯ w1n

⋮ ⋱ ⋮
wn1 ⋯ wnn

), we calculate the threshold of weight according to the pruning

percentage p, as:

τ = percentile(|Wl |, p) (1)

We then generate mask matrix Ml so that the weights with absolute values greater than the threshold

can remain unchanged while other weights are reset to zero, as:

Mij = {
1, if|wij| > τ

0, otherwise
 (2)

The updated weight matrix Wl is the principal element product of the original weight matrix and the

mask matrix.

Wl
, = Wl ⨀ Ml (3)

Where ⨀ represents element-by-element product.

Figure 1. Visualization of pruning process.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/107/20241215

109

Table 1. Pseudo code of pruning algorithm

Algorithm 1: Pruning Algorithm. P represents the list of parameters to prune, w is the parameter

tensor, τ is the computed threshold, m is the generated mask, and wpruned is the pruned

parameter tensor.

Input: model, pruning_ratio
Output: pruned_model

prune(model, pruning_ratio)

P←[(model.fc,’weight’)]

for (module, param)∈ P do

 w←module[param] // retrieve parameter tensor

 τ←threshold(∣w∣, pruning_ratio)

 m← w > τ // generate mask

 wpruned←w⋅m // apply mask

 module[param]←wpruned// update parameter

 end for
 return model

3.2. Quantization

Similar to the settings in pruning, given weight matrix Wl of layer l, the quantization algorithm calculate

the maximum absolute value 𝑚𝑎𝑥 _𝑣𝑎𝑙 of the elements in the weight matrix, as:

max _val = max (|Wl |) (4)

Based on the maximum absolute value, the quantization scale 𝑆 will be calculated, as:

S =
2num_bits−1

max _val
 (5)

where num_bits is the bit width of quantization. The quantized weight matrix 𝑊𝑙
𝑄

 can be defined as:

Wl
Q

= ⌊Wl × S⌉ ×
1

S
 (6)

Where ⌊∙⌉ means rounding. The basic process and algorithm pseudo code of classical quantization

algorithm are shown in Figure 2 and Table 2 respectively.

Figure 2. Visualization of quantization process.

Table 2. Pseudo code of quantization algorithm

Algorithm 2 Quantization Algorithm. 𝑄 represents the quantized model, and 𝐿 denotes the set of

linear layers in the model.

Input: model

Output: quantized_model

1. quantize(model)

2. Set model to evaluation mode

3. 𝑄 ← dynamically quantize model(model, { 𝐿 }, dtype=qint8)

4. return 𝑄

5. end function

Proceedings of the 2nd International Conference on Machine Learning and Automation

DOI: 10.54254/2755-2721/107/20241215

110

3.3. Knowledge distillation

As shown in Figure 3, the knowledge distillation module is implemented as a teacher-student framework.

The pseudo code of Knowledge Distillation Algorithm is illustrated in Table 3. Given the input data x,

the teacher model ft produces the output zt , as:

zt = ft(x) (7)

We apply the temperature scale T to the output of the teacher model to obtain the soft label qt, as:

q
t

= softmax (
zt

T
) =

exp (
zi
T

)

∑ exp (
zj

T
)j

 (8)

Given the same input data x, the student model fs produces the output zs using the equation (7). The

cross entropy loss L serves as the loss function for the student model, which is trained using the
instructor model's soft labels.

L = CrossEntropyLoss(zs , qt) (8)

The student model parameters are optimized using the backpropagation algorithm, as:

θs = θs − η∇θL (9)

Table 3. The pseudo code of knowledge distillation algorithm

Algorithm 3 Knowledge Distillation Algorithm. 𝑆 represents the student model, 𝑇 represents

the teacher model, 𝐷 denotes the data loader, 𝑂 is the optimizer, ℓ is the loss function, 𝛼 is the

weighting factor, and 𝑇′ is the temperature.

Input: student_model, teacher_model, data_loader, optimizer, loss_fn, alpha, temperature

Output: average_loss

1. distill(𝑆, 𝑇, 𝐷, 𝑂, ℓ, 𝛼, 𝑇′)
2. Set S to training mode

3. Set T to evaluation mode

4. 𝐿cumulative ← 0

5. for each (x, y)∈D do

6. Move x, y to the computation device

7. O.zero_grad()

8. 𝑦𝑠 ← S(x)//student output

9. with no gradient computation do

10. 𝑦𝑡 ←T (x) //teacher output

11. 𝑃𝑡← softmax(
𝑦𝑡

𝑇
)//soft target

12. 𝑃𝑠← softmax(
𝑦𝑠

𝑇
)//soft output

13. 𝐿𝑠𝑜𝑓𝑡 ←ℓ(𝑃𝑠𝑃𝑡)⋅(𝛼 ⋅ 𝑇2)

14. 𝐿ℎ𝑎𝑟𝑑 ←ℓ(𝑦𝑠𝑦𝑡)⋅(1- 𝛼)

15. 𝐿𝑡𝑜𝑡𝑎𝑙 ← 𝐿𝑠𝑜𝑓𝑡 + 𝐿ℎ𝑎𝑟𝑑

16. 𝐿𝑡𝑜𝑡𝑎𝑙.backward()

17. O.step()

18. 𝐿cumulative ← 𝐿cumulative + 𝐿𝑡𝑜𝑡𝑎𝑙

19. end for 𝐿cumulative

20. 𝐿𝑎𝑣𝑔 ←
𝐿cumulative

|𝐷|
//average loss

21. return 𝐿𝑎𝑣𝑔

22. end function

Proceedings of the 2nd International Conference on Machine Learning and Automation

DOI: 10.54254/2755-2721/107/20241215

111

Figure 3. The structure of knowledge distillation.

3.4. Mode Construction
In this study, we systematically analyzed and compared the issues of communication and model

compression in Federated Learning. First, we built a baseline model based on the Fashion-MNIST

dataset using a fully connected neural network. Next, we applied the three compression methods—
pruning, quantization, and knowledge distillation—individually to the baseline model and evaluated

their impact on the model's accuracy, size, and computation latency. To be more precise, quantization

lowers computation and storage costs by decreasing the precision of model parameters, pruning reduces

model parameters by eliminating unnecessary neural network connections, and knowledge distillation
compresses the model by transferring knowledge from a larger teacher model to a smaller student model.

After completing individual comparisons, we explored the combination of these three compression

methods to identify the optimal strategy for maximizing the efficiency of Federated Learning. In this
combined strategy, we applied pruning, quantization, and knowledge distillation in sequence. First, we

pruned the model to significantly reduce the number of parameters, followed by quantization of the

pruned model to further reduce computational and storage demands. Finally, we applied knowledge

distillation to transfer the teacher model's knowledge to a smaller student model, optimizing its
performance. After each training round, we used state dictionary aggregation to average the parameters

of multiple models, constructing a stable and efficient global model.

4. Experiment

4.1. Dataset

The experiment leverages the Fashion-MNIST dataset, a commonly regarded standard for picture

classification tasks. Fashion-MNIST comprises 70,000 28x28 grayscale photos organized into 10
categories, with 7,000 images per category. The training set comprises 60,000 photos, whereas the test

set includes 10,000 images. This dataset is ideal for validating the performance and applicability of

model compression methods [16].

4.2. Implement details
A simple neural network model, SimpleNN, is used as the baseline model in this experiment. SimpleNN

consists of three fully connected layers: the first layer converts the 28x28 pixel input image into a 128-

dimensional feature vector, the second layer compresses this feature vector to 64 dimensions, and the
third layer produces a 10-category output from the 64-dimensional feature vector. Despite its simple

structure, SimpleNN achieves good performance on the Fashion-MNIST dataset and serves as a suitable

benchmark for studying model compression methods [17].
According to Table 4, an appropriate set of hyperparameters was selected for the experiments to

balance the training speed and performance of the model. Specifically, the learning rate was set to 0.01,

which usually achieves a good balance between training stability and convergence speed. The batch size

was set to 64, ensuring computational efficiency and providing the model with enough samples for

Proceedings of the 2nd International Conference on Machine Learning and Automation

DOI: 10.54254/2755-2721/107/20241215

112

effective training. The momentum parameter was set to 0.9, helping to accelerate gradient descent and

suppress oscillations.

Table 4. Variable Description Table

Parameter name Value Description

NUM_MODELS 3 The number of models trained simultaneously

LEARNING_RATE 0.01
Learning rate, which determines the step size of

model parameter updates

BATCH_SIZE 64 The number of samples in each training batch

MOMENTUM 0.9
Momentum parameter, which accelerates gradient

descent and suppresses oscillation

PRUNE_AMOUNT 0.2
Pruning ratio, which indicates that 20% of the

weights are removed each time

QUANTIZE_DTYPE torch.qint8
Quantized data type, which quantizes model

parameters into 8-bit integers

DISTILL_ALPHA 0.5

The weight coefficient of distillation loss, which

indicates the balance between the teacher model

and the student model loss

DISTILL_TEMPERATURE 2.0
Distillation temperature, which controls the degree

of softening of the probability distribution

NUM_EPOCHS 20 Number of training rounds

For model compression, the pruning ratio was set to 20%, meaning that 20% of the weights were

removed during each pruning iteration. This aimed to reduce model complexity while maintaining

performance. During quantization, model parameters were converted into 8-bit integers, significantly
reducing storage requirements and computational load. In knowledge distillation, the weight coefficient

for distillation loss was set to 0.5 to balance the losses of the teacher and student models, and the

distillation temperature was set to 2.0, as an appropriate temperature can maximize the distillation effect.
The number of training epochs was set to 20 to ensure that training was finished within a reasonable

time while giving the model sufficient opportunities to learn the data's characteristics. The purpose of

selecting these hyperparameters was to maximize the efficiency of training and inference while ensuring
model performance. Experimental verification showed that these settings effectively support the

implementation of model compression methods such as pruning, quantization, and knowledge

distillation.

4.3. Experimental Results
To test the effect of different lightweight technologies on model performance, we quantitatively

analyzed the accuracy, loss, latency and Transmission ratio of different models, whose findings are

displayed in Table 5. The original model serves as the baseline with the highest accuracy at 93.84%, the
lowest loss at 2.76, the delay of 4.21, and the transmission ratio of 1. In comparison, the Prune technique

reduces the model's complexity, resulting in a slight drop in accuracy to 90.77% and an increase in loss

to 4.59. However, it improves the delay to 3.82 and reduces the transmission ratio to 0.86. The
Quantification method shows a similar pattern, achieving an accuracy of 91.06% and a loss of 4.88, with

delay and transmission ratio values of 3.97 and 0.25, respectively. Knowledge Distillation leads to the

lowest accuracy among all techniques at 88.65%, with a minimal increase in loss to 2.81, suggesting a

significant simplification of the model. The delay slightly improves to 4.06, and the transmission ratio
drops to 0.45.

When combining techniques, the model 5 (prune+quantification) yields an accuracy of 92.21% and

a loss of 5.69, with the lowest delay recorded at 3.05 and a reduced transmission ratio of 0.25. The
combination of prune and knowledge distillation (Model 6) maintains a comparable accuracy of 90.84%

and a loss of 3.29, with a delay of 3.23 and a transmission ratio of 0.45. The combination of

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/107/20241215

113

quantification and knowledge distillation technique (Model 7) shows an accuracy of 90.91%, a loss of

3.32, a delay of 4.05, and the lowest transmission ratio at 0.11. Finally, the combination of all three

methods (Model 8) results in a balanced performance with an accuracy of 91.77%, a loss of 4.17, a delay
of 3.06, and a transmission ratio of 0.11. All the results highlight the trade-offs between accuracy, model

complexity, and resource efficiency across different model modifications.

Table 5. Comparison of quantitative experimental results of different methods

Model Prune Quantification
Knowledge
Distillation

Accuracy Loss Delay
Transmission

ratio

1 93.84% 2.76 4.21 1.00

2 √ 90.77% 4.59 3.82 0.86

3 √ 91.06% 4.88 3.97 0.25

4 √ 88.65% 2.81 4.06 0.45

5 √ √ 92.21% 5.69 3.05 0.25

6 √ √ 90.84% 3.29 3.23 0.45

7 √ √ 90.91% 3.32 4.05 0.11

8 √ √ √ 91.77% 4.17 3.06 0.11

4.4. Convergence Analysis

Figure 4 demonstrates varying trends in accuracy across different model optimization techniques as the

rounds progress. The original model shows a consistent increase in accuracy throughout all rounds,
achieving high performance without any optimizations. Techniques such as pruning and quantization

impact the model's accuracy to different extents. Pruning generally leads to a slight decrease in accuracy,

while quantization has a more significant impact, especially in the initial rounds, leading to greater

fluctuations. Knowledge distillation starts with a lower accuracy but displays a stable upward trend,
indicating moderate improvements compared to other individual techniques. The combination of

pruning and quantization or pruning and knowledge distillation, generally achieve better accuracy than

individual techniques, while the combination of all three techniques usually performs well, although it
may not always surpass the accuracy of the original model.

Figure 4. Model Accuracy and Loss Comparison Across Rounds.

Proceedings of the 2nd International Conference on Machine Learning and Automation

DOI: 10.54254/2755-2721/107/20241215

114

In terms of loss convergence, the original model exhibits a steady reduction in loss, indicating a

consistent decrease in error rate over the rounds. Pruning shows a slower reduction in loss compared to

the original model, suggesting that while it can improve efficiency, it may initially lead to a higher error
rate. Quantization exhibits a similar trend to pruning, with relatively slower loss reduction, highlighting

the trade-off between reducing model size and increasing error. Knowledge distillation demonstrates a

more rapid convergence in loss compared to pruning and quantization alone, suggesting that transferring
knowledge from a larger model can effectively reduce errors. Combined methods, particularly the

combination of pruning, quantization, and knowledge distillation, show a good balance between

accuracy and loss reduction.

4.5. Delay and Transmission Ratio Analysis
Figure 5 presents different characteristics of delay across various models. The original model exhibits

the highest delay, indicating the longest processing or transmission time, likely due to its complexity

and lack of optimizations. The pruning technique shows a significant reduction in delay, demonstrating
that reducing model complexity can improve data processing speed. Quantization also results in a lower

delay compared to the original model, although it is slightly higher than pruning, suggesting that while

quantization reduces model size, it may sometimes increase processing time. The knowledge distillation
method also shows low delay, similar to pruning, indicating that model simplification and knowledge

transfer effectively reduce processing time. Among the combined methods, the combination of pruning

and quantization notably lowers delay, highlighting the synergistic effect of these two optimization

techniques in further reducing processing time. Overall, all optimization techniques effectively reduce
delay, enhancing the model's efficiency.

The transmission ratio reflects the efficiency of data transmission, with lower values indicating

higher compression or transmission efficiency. The bar chart shows that the original model has a
transmission ratio of 1, serving as a baseline. The pruning method significantly reduces the transmission

ratio, indicating improved transmission efficiency by eliminating redundant data in the model.

Quantization leads to a substantial reduction in the transmission ratio, demonstrating its superior

performance in data compression. The knowledge distillation method also lowers the transmission ratio,
though to a lesser extent, indicating its primary optimization impact is in reducing model complexity

rather than data size. In the combined methods, especially the combination of pruning, quantization, and

knowledge distillation, the transmission ratio reaches the lowest values, indicating that the joint
application of these techniques maximizes data compression efficiency.

Figure 5. Delay and Transmission Ratio Comparison Across Models.

Proceedings of the 2nd International Conference on Machine Learning and Automation

DOI: 10.54254/2755-2721/107/20241215

115

5. Discussion

The previously described experimental findings show how various optimization strategies, including

quantization, pruning, and knowledge distillation, can improve model performance, especially with
regard to accuracy and loss. However, the significant impact of knowledge distillation on accuracy might

indicate deficiencies in the SimpleNN (simple neural network) architecture, either in network design or

the knowledge transfer process. This could be due to the overly simplistic structure of the SimpleNN
model, which may fail to effectively capture and represent the complex knowledge conveyed by the

teacher model. We also notice that the configuration of temperature parameters and loss function design

involved in the knowledge distillation process may prevent the student model from fully learning the

essential content from the teacher model, thus affecting the final accuracy. Another noteworthy
phenomenon is that the combination of pruning and quantization, while achieving excellent performance

in terms of accuracy, also results in the highest loss. This could be because, in the SimpleNN architecture,

pruning and quantization lead to extreme compression of model parameters, particularly considering the
already limited number of parameters in this model. Such compression might result in the loss of crucial

information. Specifically, the simplification of floating-point representation during quantization and the

removal of important connections during pruning can increase model errors, thereby raising the loss.
Future research will examine the applicability of these compression strategies to a larger range of

datasets and architectures, as this study only used the Fashion-MNIST dataset and a particular neural

network architecture. At the same time, introducing more advanced hyperparameter optimization

methods to fine-tune the balance between compression and performance is also a direction worth
exploring, especially using the powerful non-deformation transformation capabilities of deep

convolutional networks to model deep combinations between different methods. In addition, in order to

further improve the efficiency and applicability of the model in resource-constrained environments, we
will also consider federated learning collaboration between different AI chips.

6. Conclusion

This study evaluated several model compression strategies, including pruning, quantization, and

knowledge distillation, and assessed their individual and combined effects on model performance and
efficiency. The original model, without any compression, showed the highest accuracy and best

performance across all metrics. However, its large size resulted in the highest latency and transmission

ratio, making it less suitable for practical applications where resource consumption is a critical factor.
We discovered that the combination of pruning, quantization, and knowledge distillation performed the

best overall after examining the effects of different model compression strategies. This combination

preserved high accuracy and minimal loss while also successfully reducing the model's size and
computational resource requirements.

References

[1] Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2018).

Communication-Efficient Learning of Deep Networks from Decentralized Data. Proceedings
of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS),

PMLR 84, 549-558.

[2] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S.
(2020). Advances and Open Problems in Federated Learning. Foundations and Trends® in

Machine Learning, 14(1-2), 1-210. doi:10.1561/2200000083

[3] Li, Y., Zhang, S., Cheng, Y., Liu, W., & Tian, Q. (2020). PQK: Model Compression via Pruning,
Quantization, and Knowledge Distillation. Proceedings of the 28th ACM International

Conference on Multimedia (MM '20), 4073-4081. doi:10.1145/3394171.3413675

[4] Polino, A., Pascanu, R., & Alistarh, D. (2018). Model Compression via Distillation and

Quantization. 6th International Conference on Learning Representations (ICLR 2018).

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/107/20241215

116

[5] He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2018). Combining Weight Pruning and Knowledge

Distillation for Efficient Convolutional Neural Network Compression. IEEE Transactions on

Neural Networks and Learning Systems, 30(12), 4405-4418.
doi:10.1109/TNNLS.2019.2903600

[6] Tang, W., Hua, X., & Wang, J. (2019). Efficient and Controllable Model Compression through

Sequential Knowledge Distillation and Pruning. Proceedings of the AAAI Conference on
Artificial Intelligence, 33, 4761-4768. doi:10.1609/aaai.v33i01.33014761

[7] Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2017). Efficient and Controllable Model

Compression through Pruning and Knowledge Distillation. arXiv preprint arXiv:1711.09418.

[8] Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). Analysis of Model Compression Using
Knowledge Distillation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

41(12), 3045-3059. doi:10.1109/TPAMI.2018.2871283

[9] Li, X., Huang, K., Yang, W., Wang, S., & Zhang, Z. (2020). On the convergence of FedAvg on
non-IID data. arXiv preprint arXiv:1907.02189.

[10] Huang, Z., Wang, N., & Zhou, Y. (2018). Progressive Multi-Level Distillation Learning for

Network Pruning. Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), PMLR 80, 2494-2504.

[11] Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M., & Wang, X. (2017). Joint Structured

Pruning and Dense Knowledge Distillation for Efficient Transformer Compression.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
7257-7265. doi:10.1109/CVPR.2017.769

[12] Xu, C., Zhou, H., Lin, J., & Wu, J. (2020). Mitigating Carbon Footprint for Knowledge

Distillation Based Deep Learning Model Compression. Proceedings of the 34th Conference
on Neural Information Processing Systems (NeurIPS 2020).

[13] Zhang, T., Ye, R., Zhang, S., Tang, J., & Hua, X. S. (2018). A Novel Deep-Learning Model

Compression Based on Filter-Stripe Group Pruning and Its IoT Application. Proceedings of

the IEEE International Conference on Computer Vision (ICCV), 1044-1053.
doi:10.1109/ICCV.2019.00107

[14] Han, S., Mao, H., & Dally, W. J. (2016). Deep Compression: Compressing Deep Neural Networks

with Pruning, Trained Quantization, and Huffman Coding. International Conference on
Learning Representations (ICLR 2016).

[15] Jiang, Z., Xu, X., Chen, Q., & Yang, Y. (2018). High Efficient Compression: Model Compression

Method Based on Channel Pruning and Knowledge Distillation. Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (CIKM '18), 667-676.

doi:10.1145/3269206.3271793

[16] Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A Novel Image Dataset for

Benchmarking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747.
[17] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Proceedings of the 2nd International Conference on Machine Learning and Automation

DOI: 10.54254/2755-2721/107/20241215

117

