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Abstract. This paper presents an enhanced Cycle-Consistent Adversarial Networks (CycleGAN) 

model aimed at preserving semantic consistency during image-to-image translation, with a focus 

on complex tasks such as autonomous driving and scientific simulations. The study's key 

contribution is the incorporation of a pre-trained semantic segmentation model to preserve 

important characteristics during translation, such as license plates, traffic signs, and pedestrian 

structures. By introducing a semantic consistency loss alongside the traditional cycle-

consistency loss, the proposed approach ensures that key features are retained, even in 

challenging scenes. Extensive experiments conducted on the Cityscapes dataset demonstrate the 

effectiveness in maintaining both visual fidelity and semantic accuracy, significantly improving 

upon the traditional CycleGAN. This method proves particularly valuable in domains where 

precision is essential, such as cross-domain image generation for autonomous systems and 

medical imaging. Future research will focus on optimizing the model for real-time applications 

and exploring multi-domain frameworks to further enhance its performance in diverse 

environments. Overall, this study offers an efficient image style-transfer solution for preserving 

semantic integrity without sacrificing translation accuracy. 
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1.  Introduction 

In a variety of domains, including science simulations, design, and the arts, Image-to-Image Translation 

(I2I) is essential. Its major goal is to transfer photos between domains while maintaining the necessary 

content. Notable advances in this area began with Generative Adversarial Networks (GANs), 

particularly with pixel-to-pixel (Pix2Pix), which relied on paired data [1]. However, obtaining paired 

datasets is often impractical, leading to the development of unpaired methods like Cycle-Consistent 

Adversarial Networks (CycleGAN) [2]. CycleGAN introduced the concept of cycle consistency to 

achieve domain translation without paired datasets [2]. However, despite its success, CycleGAN suffers 

from challenges, especially in preserving semantic information during translation. Recent efforts have 

focused on improving the diversity of generated images by exploring one-to-many mappings [3, 4]. This 

study revisits CycleGAN’s framework to address its semantic consistency limitations, leveraging pre-

trained semantic segmentation models to ensure that critical objects and features remain intact during 

translation. This approach enhances the model’s utility in applications requiring high precision. 
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In the domain of image-to-image translation, Pix2Pix introduced paired translation using Conditional 

GANs [1], followed by Pix2PixHD for high-resolution images [5]. However, the difficulty of obtaining 

paired datasets spurred the development of unpaired methods. Gathering or annotating these kinds of 

datasets is frequently difficult or costly. Utilizing computer gaming software to create lifelike virtual 

environments is a viable substitute that offers a controllable and affordable option. Virtually infinite 

training data may be provided by such software, which can also replicate real-world events that are 

ordinarily hard to witness. Unfortunately, biases are introduced when using data from synthetic domains, 

which frequently leads to domain shifts that negatively impact downstream activities' performance. 

Bousmalis et al. explored unsupervised domain adaptation with GANs [6], while Liu et al. proposed 

shared latent space translation [7]. Taigman et al. developed a method for cross-domain generation 

without paired data [8]. CycleGAN, proposed by Zhu et al., solved unpaired translation using cycle 

consistency but struggled with instability and semantic consistency in complex scenes [2]. Recent 

models like Multimodal Unsupervised Image-to-Image Translation (MUNIT) [3] and Diverse Image-

to-Image Translation (DRIT) [9] introduced multimodal translations, while StarGAN handled multi-

domain translation [4]. Diffusion models, such as Denoising Diffusion Probabilistic Models (DDPM), 

also emerged as powerful generative approaches for style transfer [10]. Despite these advancements, 

maintaining semantic consistency remains a challenge. Unsupervised Generative Attentional Networks 

with Adaptive Layer-Instance Normalization for Image-to-Image Translation (U-GAT-IT) and ACL-

GAN have sought to enhance performance through more sophisticated networks or by relaxing cycle-

consistency constraints. However, these models often trade off consistency for diversity, making them 

less suitable for tasks requiring precise one-to-one mapping. This study aims to address these issues by 

preserving semantic structure without sacrificing consistency. 

The introduction of semantic consistency loss in style transfer is designed to preserve crucial 

details—such as digits on license plates, object types, and other important elements—during the 

transformation process. For instance, in a street scene style transfer, a car should remain recognizable 

as a car, and key features like the license plate must stay intact, ensuring that while the visual style 

changes, essential details for tasks like recognition or identification are maintained. This is particularly 

critical in fields requiring high accuracy in image translation. The objective of this research is to enhance 

semantic coherence during image translation by incorporating pre-trained semantic segmentation 

models. This improves the accuracy of translations in complex scenes by ensuring that important 

features are retained. The approach integrates a semantic loss function into the CycleGAN training 

process, preserving essential semantic structures without significantly increasing computational 

demands. This improved method is valuable for applications where precision is key, such as autonomous 

driving, scientific simulations, and medical imaging, as it balances efficiency and accuracy. 

2.  Methodology 

2.1.  Dataset description and preprocessing  

The datasets utilized in this study include the Cityscapes and GTA5 datasets, as shown in Figure 1. The 

Cityscapes dataset is widely used in the computer vision community, particularly for urban scene 

understanding and autonomous driving applications [11]. It consists of images captured from a car's 

perspective across various European cities, featuring 5,000 finely annotated images and an additional 

20,000 coarsely annotated images. These images cover 30 different object classes, such as vehicles, 

pedestrians, buildings, and road signs, making it a robust resource for tasks like semantic segmentation 

and image translation. Similarly, the GTA5 dataset, derived from a virtual urban environment, contains 

24,966 annotated images that are synthetically generated but closely mimic real-world urban scenes, 

providing additional variability and complexity in training models for semantic segmentation tasks. 

Bilinear interpolation was used for preprocessing to scale the pictures from both datasets to 

1024x1024 pixels to preserve uniformity in input dimensions across the network. The training data was 

augmented using techniques like random horizontal flipping and cropping to decrease overfitting and 

boost variety [12]. To ensure that the inputs stay on a same scale for efficient model training, 
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normalization was specifically implemented by scaling the pixel values to a standard range, with a mean 

of 0.5 and a standard deviation of 0.5, at the same time random horizontal flipping was also applied with 

a probability of 0.5 to simulate different orientations of the same scene. During the training process, 

input images are randomly cropped to a size of 768x768 pixels. This operation is a common data 

augmentation technique aimed at increasing data diversity by cropping different regions of the image, 

while also enhancing the model’s robustness to variations in scale and spatial information. By randomly 

cropping the original images, the model is exposed to different parts of the input image, thereby 

preventing overfitting to specific areas and improving generalization across unseen data. 

2.2.  Proposed approach  

The proposed approach enhances CycleGAN by integrating a pre-trained semantic segmentation 

network to improve semantic consistency during image translation, as shown in the Figure 2. This 

method adds a semantic consistency loss to ensure the translated images retain the original semantic 

structures. The loss function is guided by a semantic segmentation module, which provides high-level 

feature maps to inform the translation process.   

  

Figure 1. The Cityscape dataset. 

 

Figure 2. Overview of the improved CycleGAN framework. In addition to the original cycle-

consistency loss (blue arrows), which ensures structural integrity after translating between source 𝑋𝑆 

and target 𝑋𝑇 domains, this framework extends the traditional CycleGAN by introducing a semantic 

loss (orange arrows) to enhance semantic consistency during image translation between domains. 
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2.2.1.  Generator and discriminator networks.  The generator networks 𝐺𝑆→𝑇 and 𝐺𝑇→𝑆 are central to 

the CycleGAN architecture, and responsible for translating images between the source and target 

domains. These generators utilize a U-Net architecture, which is advantageous due to its ability to 

capture fine-grained details and preserve spatial hierarchies in images [13]. The U-Net structure, 

consisting of convolutional and deconvolutional layers, is particularly well-suited for tasks that require 

precise localization of features, such as image translation and segmentation. The discriminator networks 

𝐷𝑆 and𝐷𝑇 function as PatchGANs, focusing on classifying small patches of an image as real or fake [14]. 

The patch-based discriminator is effective at concentrating on texture details, which increases the 

realism of the generated images by allowing the discriminator to focus on localized features. These 

discriminators provide critical feedback to the generators, encouraging the creation of more realistic and 

consistent images [15]. 

2.2.2.  Semantic consistency module. The semantic consistency module extracts semantic properties 

from the source and translated pictures by using a pre-trained semantic segmentation network, such as 

DeepLabV3 or SegNet. Here, the DRN26 model is used because of its capacity to use dilated 

convolutions to preserve spatial information at various scales. This aids in the translation process' 

preservation of semantic structures, which guarantees that the translated picture retains the semantic 

meaning of the original image. This loss is computed as the 𝐿2 -norm between the feature maps 

𝑆𝐸𝑀𝑆(source) and 𝑆𝐸𝑀𝑇(translated), guiding the generator to produce translations that retain critical 

semantic structures of the original image. 

2.3.  Implementation details  

The system is implemented in Python using the PyTorch deep learning framework, selected for its 

flexibility in constructing custom neural network architectures. The model used in this study is the 

DRN26 (Dilated Residual Network), which is highly suitable for semantic segmentation tasks due to its 

ability to maintain spatial information at various levels of depth. The DRN26 architecture incorporates 

residual connections and dilated convolutions, which enhance feature extraction at multiple scales. 

Several hyperparameters were fine-tuned to optimize the performance of the model. Several 

hyperparameters were fine-tuned to optimize the performance of the model. The learning rate for the 

DRN26 segmentation network was set to 1 × 10−3, to balance convergence speed and stability. For the 

CycleGAN architecture, the learning rate for both the generator and discriminator networks was set to 

0.0002 after experimenting with various values. A batch size of 2 was used during segmentation training, 

and 1 for the CycleGAN generators, as memory constraints require small batch sizes for such models. 

The cycle consistency weight (𝜆𝑐) was set to 10, which effectively preserved the source image structure 

during translation. Meanwhile, the semantic consistency weight (𝜆𝑠) was fine-tuned to 1, maintaining a 

balance between preserving semantic content and not overwhelming the other loss functions. These 

hyperparameters were selected through empirical testing to ensure optimal model performance. 

2.4.  Loss function 

The proposed approach integrates multiple loss functions to strike a balance between visual realism and 

semantic accuracy during domain translation. The main loss functions are as follows: 

𝐿𝐺𝐴𝑁
𝑆→𝑇 (𝐺𝑆→𝑇 , 𝐷𝑇 , 𝑋𝑇 , 𝑋𝑆) = 𝔼𝑥𝑡∈𝑋𝑇

[𝑙𝑜𝑔𝐷𝑇(𝑥𝑡)] + 𝔼𝑥𝑠∈𝑋𝑠
[log (1 − 𝐷𝑇(𝐺𝑆→𝑇(𝑥𝑠)))] (1) 

𝐿𝐺𝐴𝑁
𝑇→𝑆 (𝐺𝑇→𝑆, 𝐷𝑆, 𝑋𝑆, 𝑋𝑇) = 𝔼𝑥𝑠∈𝑋𝑆

[𝑙𝑜𝑔𝐷𝑆(𝑥𝑠)] + 𝔼𝑥𝑠∈𝑋𝑇
[log (1 − 𝐷𝑆(𝐺𝑇→𝑆(𝑥𝑡)))] (2) 

The GAN loss is fundamental for training the generator to produce realistic images that are 

indistinguishable from real images in the target domain. Both from the source to the target and from the 

target to the source, this loss is applied. It ensures the visual fidelity of the translated images, penalizing 

the generator when the discriminator can distinguish between real and generated images. Equations (1) 

and (2), for the source-to-target and target-to-source directions, respectively, express this loss function. 
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𝐿𝑐𝑦𝑐(𝐺𝑆→𝑇 , 𝐺𝑇→𝑆, 𝑋𝑇 , 𝑋𝑆) = 𝔼𝑥𝑠∈𝑋𝑠
[||𝐺𝑇→𝑆(𝐺𝑆→𝑇(𝑥𝑠)) − 𝑥𝑠||

1
] 

+𝔼𝑥𝑡∈𝑋𝑇
[||𝐺𝑆→𝑇(𝐺𝑇→𝑆(𝑥𝑡)) − 𝑥𝑡||

1
] (3) 

This loss guarantees the ability to reverse when doing the translation process; that is, a picture that is 

structurally coherent with the original should be produced when translating an image from the source 

domain to the target domain and back. It is defined as the 𝐿1-norm of the difference between the input 

image and the image reconstructed after two consecutive translations (equation 3). 

𝐿𝑠𝑒𝑚(𝑆𝑒𝑚𝑆, 𝑆𝑒𝑚𝑇 , 𝐺𝑆→𝑇 , 𝐺𝑇→𝑆) =  𝔼𝑥𝑠∈𝑋𝑠
ℒ[𝑆𝑒𝑚𝑆(𝑥𝑠), 𝑆𝑒𝑚𝑇(𝐺𝑆→𝑇(𝑥𝑠)] 

                                                         +𝔼𝑥𝑡∈𝑋𝑇
ℒ[𝑆𝑒𝑚𝑇(𝑥𝑡), 𝑆𝑒𝑚𝑆(𝐺𝑇→𝑆(𝑥𝑡)]                                                   (4) 

This loss is designed to preserve the semantic content of the source and target images during the 

translation process. By comparing the semantic features of the input and translated images, the model 

ensures that critical structures (such as shapes, objects, or important features) remain intact after 

translation. Semantic features are extracted using segmentation networks 𝑆𝑒𝑚𝑆 and 𝑆𝑒𝑚𝑇, which are 

specifically trained to segment source and target domain images. The semantic consistency loss, defined 

in equation (4), uses the DRN26 convolutional network to measure discrepancies in the semantic feature 

space between the original and translated images. 

Complete Loss Function: The final loss function (equation 5) combines the above components: the 

GAN loss from both directions 𝐿𝐺𝐴𝑁
𝑆→𝑇  and 𝐿𝐺𝐴𝑁

𝑇→𝑆 , the cycle consistency loss 𝐿𝑐𝑦𝑐 , and the semantic 

consistency loss 𝐿𝑠𝑒𝑚 . Two hyperparameters, 𝜆𝑐  and 𝜆𝑠 , are introduced to control the relative 

importance of the cycle consistency loss and semantic consistency loss, respectively. The complete loss 

function is expressed as: 

                                                          𝐿 = 𝐿𝐺𝐴𝑁
𝑆→𝑇 + 𝐿𝐺𝐴𝑁

𝑇→𝑆  + 𝜆𝑐𝐿𝑐𝑦𝑐 + 𝜆𝑠𝐿𝑠𝑒𝑚                                                (5) 

Here, 𝜆𝑐 ensures that the reconstruction fidelity is maintained, while 𝜆𝑠 emphasizes the preservation 

of semantic information during the translation. This composite loss framework allows the model to 

generate visually realistic images while preserving important semantic features, leading to more 

meaningful and semantically accurate translations compared to traditional CycleGAN models. 

3.  Result and Discussion  

The experimental results of style transfer from GTA5 game screenshots to Cityscapes demonstrate the 

effectiveness of the model in cross-domain image translation and semantic segmentation tasks, 

especially the improvement in maintaining semantic consistency, which improves the translation 

accuracy of the target image. The following is a detailed analysis of the results. As shown in Figure 3 

(c) and (d), in the cross-domain conversion experiment from GTA5 game screenshots to cityscapes, the 

enhanced CycleGAN model performs well in handling complex urban scenes by introducing semantic 

consistency loss. The model can successfully convert the synthesized GTA5 scenes into realistic 

cityscape images while retaining important semantic features. In particular, the performance of the 

model has been significantly improved in the recognition of vehicles, buildings, and road signs. 

 

Figure 3. Example images selected from cityscape dataset (a) and GTA5 images dataset(c), along with 

the translated images (b) and (d), respectively. 
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Compared with the source domain model, the performance of the model has been significantly 

improved in multiple categories, especially in key categories such as "rider" and "vehicle". This 

improvement is attributed to the fact that the model retains high-level semantic information in the target 

image during the conversion process, thereby maintaining higher accuracy in the semantic segmentation 

task. 

By observing the experimental results, it can be found that the added semantic consistency loss 

significantly improves the quality of generated images and the performance of the model in the target 

domain. The enhanced CycleGAN model can better preserve the details of buildings and roads, making 

the images it generates in the Cityscapes dataset more consistent with the actual scenes. This is especially 

important for applications such as autonomous driving that require precise scene understanding. Further 

experimental results show that the model can better maintain fine-grained semantic information in high-

resolution images since the model can effectively maintain the clarity of road markings and license 

plates while reducing edge blur when processing complex street scenes. 

4.  Conclusion  

In this study, an enhanced CycleGAN model is proposed to improve semantic consistency during image-

to-image style transfer, which is particularly important for complex tasks such as autonomous driving 

and scientific simulations. By combining a pre-trained semantic segmentation model, the proposed 

method ensures that key features, such as road signs and pedestrians, maintain their semantic structure 

during translation. The model combines the semantic consistency loss with the standard cycle 

consistency loss to achieve high-precision translation while preserving essential content. Extensive 

experiments on the Cityscapes dataset demonstrate the effectiveness of this approach in maintaining 

visual fidelity and semantic accuracy. The results highlight significant improvements in semantic detail 

preservation compared to traditional CycleGAN, especially in challenging scenes. Future research aims 

to improve the model by exploring more advanced segmentation techniques and integrating multi-

domain translation frameworks to better handle different urban environments. In addition, optimizing 

computational efficiency for real-time applications will be a key focus in the future. 
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