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Abstract. This paper presents a COVID-19 CT image segmentation method based on a modified 

U-Net model. In the study and treatment of COVID-19, the segmentation of CT images is crucial 

for understanding the virus's impact on lung tissues. Traditional image segmentation methods 

have limitations when dealing with the complex lung lesions caused by COVID-19. Therefore, 

we optimized the U-Net model's structure and introduced an efficient loss function along with 

image enhancement techniques to improve segmentation accuracy and computational efficiency. 

Experiments were conducted on the Medseg and Radiopaedia datasets. The results demonstrate 
that the modified U-Net model outperforms traditional methods in terms of segmentation 

accuracy and computational efficiency. Additionally, we discuss the advantages and limitations 

of the model and propose directions for future research. 

Keywords: COVID-19, CT Image Segmentation, U-Net Deep Learning, Medical Image 
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1.  Introduction 

In the research and treatment of COVID-19, CT image segmentation plays a pivotal role. As a non-

invasive imaging tool, CT scanning provides high-resolution images of the lungs, which is crucial for a 
detailed understanding of how COVID-19 affects lung tissues. By accurately segmenting the infected 

regions within CT images, medical researchers and clinicians can better pinpoint the specific areas of 

viral invasion. This precision allows for more accurate diagnosis and the development of tailored 
treatment plans. 

However, the inherent complexity and variability of CT images present significant challenges for 

precise segmentation. COVID-19-induced lung lesions often display irregular shapes and varying sizes, 

with blurred boundaries between the infected areas and healthy tissue. This makes it difficult for 
traditional image segmentation methods to achieve the necessary accuracy and reliability. Precise 

segmentation is not only vital for the localization of the infected regions but also directly influences 

subsequent processes such as disease monitoring, lesion analysis, treatment planning, and evaluation of 
therapeutic efficacy. 

Traditional image segmentation techniques, such as threshold-based methods, region-growing 

algorithms, and edge detection, have performed well in simpler image processing tasks. Yet, when 
confronted with the high heterogeneity of COVID-19 CT images, these methods often fall short. They 

struggle to capture sufficient image details in complex structures, leading to suboptimal segmentation 

accuracy. Consequently, this affects the effectiveness of follow-up research and clinical applications. 
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In recent years, deep learning models, particularly the U-Net architecture, have shown great promise 

in the field of medical image segmentation. U-Net is a convolutional neural network (CNN) architecture 

specifically designed for biomedical image segmentation tasks. Its distinctive U-shaped structure, which 

combines convolution and deconvolution operations, enables the model to effectively extract and 
integrate both low-level and high-level features from images. A key feature of U-Net is its skip 

connections, which introduce feature maps from the convolution stages into the deconvolution process. 

This mechanism preserves essential spatial information and fine details, thereby significantly enhancing 
segmentation accuracy. U-Net has been successfully applied in various medical image segmentation 

tasks, including tumor detection and organ segmentation, demonstrating its robustness and powerful 

capability. 

The primary objective of this study is to further enhance the performance of the U-Net model for 
COVID-19 CT image segmentation. To achieve this, we introduce several structural optimizations to 

the original U-Net model and incorporate more efficient loss functions and image enhancement 

techniques. These improvements not only bolster the model's ability to capture complex lesion features 
but also increase the stability and consistency of the segmentation results. Our experimental results show 

that the modified U-Net model outperforms traditional methods across multiple key evaluation metrics, 

particularly excelling in terms of segmentation accuracy and computational efficiency. In addition to 
presenting our improved U-Net model, we also explore the advantages and potential limitations of our 

approach, providing insights into future research directions. By building on the strengths of deep 

learning in medical image analysis, we aim to contribute a more reliable and efficient solution to the 

ongoing challenges posed by COVID-19 CT image segmentation. 

2.  Previous works  

In the field of medical image segmentation, traditional methods such as thresholding, region growing, 

edge detection, and watershed algorithms have been widely used as primary techniques. These methods 
rely on low-level image features, such as pixel color, brightness, texture, and edge information, and 

typically implement segmentation through a series of predefined rules and mathematical models. 

Although these methods have shown some effectiveness in simple image processing tasks, they have 

gradually revealed significant limitations when applied to real-world medical scenarios, especially those 
involving complex lesion structures. 

Take the thresholding method as an example. It works by setting one or more thresholds to partition 

the pixels in an image into different regions. Due to its simplicity and ease of implementation, 
thresholding has been widely used in basic image processing tasks [1]. However, in medical imaging, 

factors like lighting conditions, noise, and differences in tissue characteristics often lead to highly 

unstable segmentation results. Specifically, variations in CT and MRI equipment, imaging conditions, 
and patient physiological differences can cause changes in the brightness values of the same tissue. This 

makes it difficult for thresholding to provide consistent segmentation. Additionally, noise and artifacts 

in the images can interfere with the process, resulting in either incorrect or missed segmentation, thus 

reducing the accuracy and practicality of the method. 
Region growing methods use the similarity and connectivity between pixels to gradually expand 

from a set of initial seed points to adjacent pixels, achieving target region segmentation. While effective 

in handling simple images with clear boundaries, this approach often encounters issues of over-
segmentation or under-segmentation when applied to large-scale medical images. It is also highly 

sensitive to the selection of the initial seed points and the growth parameters. Even slight errors can lead 

to inaccurate segmentation results. For complex lesion regions, such as those caused by COVID-19 in 
the lungs, region growing struggles to adapt to their diversity and irregularity, resulting in inconsistent 

segmentation outcomes. 

Edge detection methods attempt to identify prominent edges in an image to achieve segmentation. 

However, in medical images, particularly CT and MRI scans, the boundaries of lesion areas are often 
blurred and complex in shape [2]. Traditional edge detection algorithms face challenges in accurately 

extracting these boundaries. For example, classic edge detection methods like Canny and Sobel can 
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easily miss or incorrectly detect edges when dealing with medical images containing fuzzy boundaries, 

intricate textures, and noise. COVID-19 lesions in lung CT images have irregular shapes and unclear 

boundaries, further highlighting the limitations of edge detection methods. As a result, they often fail to 

meet the high precision requirements of clinical applications. 
The watershed algorithm is a morphology-based segmentation method that uses gradient information 

in the image to divide pixels into different "watershed" regions. In theory, it can handle details well. 

However, the algorithm is highly sensitive to noise and artifacts [3]. Even slight noise can lead to over-
segmentation, generating numerous irrelevant regions and adversely affecting segmentation accuracy 

and efficiency. Since medical images often contain substantial noise and subtle variations, the watershed 

algorithm faces considerable challenges in practical applications. 

these traditional segmentation methods address certain aspects of medical image segmentation but 
have apparent limitations. They typically rely on predefined rules and feature selection, lacking a 

comprehensive understanding of global image information. Consequently, they often fall short in 

handling complex and diverse medical images, such as COVID-19-induced lung lesions, which present 
irregular shapes, blurred boundaries, and high heterogeneity. 

To overcome these challenges, researchers have recognized the limitations of traditional methods 

and started exploring more advanced segmentation techniques. In recent years, deep learning, 
particularly Convolutional Neural Networks (CNNs), has brought about a revolutionary change in 

medical image segmentation [4]. Deep learning-based segmentation methods can automatically learn 

and extract high-level features from images, eliminating the need for manual feature selection. This 

approach significantly enhances segmentation accuracy, robustness, and generalization capabilities. The 
introduction of the U-Net model has become a milestone in the field of medical image segmentation. U-

Net adopts a unique U-shaped architecture with skip connections that fuse features at different levels. 

This enables the model to capture both detailed information and global features in the image, achieving 
high-precision segmentation. Since its inception, U-Net and its various improved versions have been 

widely applied in areas such as tumor detection, organ segmentation, and tissue recognition, yielding 

remarkable results. 

The strength of deep learning models also lies in their ability to learn and extract complex feature 
representations from large datasets, adapting to various forms of lesions and tissue structures. 

Researchers have employed techniques such as attention mechanisms, improved loss functions, and data 

augmentation to further enhance model performance. These improvements have enabled deep learning 
models to excel in handling the complexity of medical images. Particularly in the segmentation of 

COVID-19 lung CT images, U-Net-based models have significantly improved segmentation accuracy 

by optimizing network structures and training strategies [5]. This provides robust technical support for 
precise clinical diagnosis and individualized treatment. Additionally, the development of deep learning 

technologies opens up new possibilities for real-time processing and automated diagnosis, paving the 

way for advancements in medical image analysis. 

3.  Dataset and Preprocessing 
The dataset used in this study consists of two parts: the Medseg portion and the Radiopaedia portion. 

The Medseg part includes 100 axial CT images from more than 40 COVID-19 patients [6]. These images 

were initially in JPG format and were converted into standardized CT images through a public platform. 
Specifically, the Medseg dataset contains 100 training slices, each with a resolution of 512x512 pixels, 

along with the corresponding training masks. The masks have four channels, representing "ground glass”, 

“consolidations”, “lungs other", "background". Additionally, the dataset includes 10 test slices for model 
evaluation. 

The Radiopaedia portion of the dataset is sourced from Radiopaedia and consists of 9 axial 

volumetric CT scans. This dataset is more complex, containing a total of 829 slices. Among these, 373 

slices were assessed as positive by radiologists and were annotated accordingly. Similar to the Medseg 
part, these images were also converted and standardized. The corresponding masks for the Radiopaedia 

dataset have four channels, each representing different lung lesion types and background regions.  
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Before performing image segmentation, medical images and their corresponding mask files were 

loaded from the specified directory. These image files were converted into a floating-point format to 

facilitate processing. By visualizing these images and masks, the quality of the data and potential issues, 

such as noise or uneven lighting conditions, can be intuitively understood. Next, the pixel value 
distribution histogram of the original image data was plotted to analyze its distribution characteristics. 

This step is crucial as it helps to observe basic information, such as image illumination and contrast, 

which guides the subsequent normalization process. To reduce instability during model training and 
improve the model's adaptability to the images, a normalization process was applied. This typically 

involves adjusting the pixel values to a range between 0 and 1, making the processed data more suitable 

for deep learning models. 

4.  Model 
In this study, the original U-Net architecture was modified to enhance its performance in medical image 

segmentation, particularly for the segmentation of COVID-19 lung CT scans. These modifications, 

along with the training process, hyperparameter settings, chosen loss function, and optimization 
techniques, are described in detail to illustrate the enhancements made to the U-Net model. 

The original U-Net architecture was proposed by Ronneberger et al. [5]. Due to its symmetrical 

structure, it is widely recognized in the medical image segmentation field for precise localization. 
However, this architecture sometimes falls short when processing images with high variability and 

complex details, such as those depicting lung diseases affected by COVID-19. To address these issues, 

several modifications were introduced. 

First, the depth of the network was increased by adding extra convolutional layers in both the 
contracting (downsampling) and expanding (upsampling) paths. This modification enables the model to 

capture more complex features, which is crucial for accurately segmenting the subtle characteristics of 

lung infections. Next, an advanced activation function was adopted. The traditional ReLU function was 
replaced with the LeakyReLU activation function, as it allows for a small non-zero gradient when the 

unit is inactive. This can help address the "neuron death" problem encountered with ReLU. dditionally, 

different padding techniques were employed to ensure that the initial image size matches the output size 

after passing through the U-Net. In this modified U-Net, 2x2 max pooling, 1x1 convolution, 2x2 up-
convolution, and padding of 1 were used. This configuration allows the model to capture complex 

information while maintaining the original pixel dimensions of the input image. inary cross-entropy was 

chosen as the loss function due to its effectiveness in binary classification tasks, such as distinguishing 
infected regions from non-infected regions in lung CT scans. Moreover, the intersection over union (IoU) 

metric was monitored as a secondary indicator to evaluate the accuracy of the segmentation boundaries. 

5.  Results 

 

Figure 1. Loss and IoU curve. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/104/20241228 

179 



 

 

From Figure 1, it can be observed that the model's accuracy (Acc) and intersection over union (IoU) 

curves indicate a gradual improvement in performance as training progresses. In the initial stages, due 

to weight initialization and the model's limited learning of data features, both Acc and IoU are relatively 

low. However, as the number of training epochs increases, the model becomes more effective at 
capturing key information in CT images. This is especially true when handling more complex lesion 

areas. Over time, the curves tend to stabilize, suggesting that the model has reached a state of 

convergence. 

 

Figure 2. Samples with high IoU. 

Figure 2 shows that, in some samples, the model accurately segments the lesion areas, achieving high 

Acc and IoU levels. This is particularly evident when the contours are clear, and the lesion regions are 

relatively concentrated. Analysis of these samples reveals that the model can effectively identify 
boundaries, demonstrating strong generalization ability for more regular lesion regions. However, even 

in these well-performing samples, small errors in tiny regions still exist. Future improvements could be 

made by increasing the model's complexity or introducing more fine-grained labels to enhance 

performance. 

 

Figure 3. Samples with low IoU. 

From Figure 3, it can be seen that in some samples, the Acc and IoU values are significantly lower. 

The model fails to effectively segment the lesion areas in these cases. These samples often have blurry 

lesion regions with unclear boundaries, especially when the contrast between the lesion and normal 
tissue is low, leading to misjudgments by the model. Further analysis indicates that this is related to the 

model's insufficient generalization ability for different types of lesions, particularly when handling 
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complex structures. To address this issue, more advanced image enhancement techniques, such as 

adaptive contrast enhancement, can be introduced in the future. Additionally, using more refined loss 

functions could help optimize the model's edge detection capabilities. 

6.  Discussion 
The improved U-Net model demonstrates significant advantages in the field of medical image 

segmentation, particularly in the analysis of COVID-19 CT images. Its strengths include enhanced depth 

and complexity, enabling the model to capture more subtle lesion features. The addition of padding 
increases the stability of the training process, while precise image alignment techniques ensure 

consistency between input and output image dimensions, which is essential for the accurate localization 

of lesion areas. Furthermore, the use of the binary cross-entropy loss function improves model 

performance in binary classification tasks, particularly in distinguishing between infected and non-
infected regions. 

However, these improvements also bring about certain challenges. The model incurs higher 

computational costs, leading to longer processing times and the need for more advanced hardware 
resources. Additionally, the model's complexity increases the risk of overfitting, especially when the 

training dataset is not sufficiently large or diverse. This complexity further complicates hyperparameter 

tuning, making the optimization process more time-consuming. Despite these challenges, the enhanced 
U-Net model has the potential to achieve more efficient and accurate image analysis through the future 

development of automated hyperparameter tuning, multimodal data fusion, and real-time analysis 

techniques. 

The impact of the improved U-Net model on COVID-19 diagnosis and treatment is substantial. Rapid 
and accurate lesion identification facilitates early diagnosis and timely intervention, which are critical 

in managing the spread and severity of the disease. Precise segmentation of lesion areas provides a 

scientific basis for the development of personalized treatment plans, allowing clinicians to tailor 
interventions based on the extent and characteristics of the infection. Additionally, by comparing 

segmentation results before and after treatment, physicians can more effectively assess the efficacy of 

therapeutic strategies and make necessary adjustments. 

Looking to the future, several promising directions can be explored to further enhance the model’s 
capabilities and expand its applications. One key area is the integration of multimodal data, such as 

combining CT images with other medical imaging modalities (e.g., MRI, PET) or incorporating clinical 

data (e.g., laboratory results, patient history). This multimodal approach could provide a more 
comprehensive analysis of disease patterns, thereby improving the model's segmentation accuracy and 

robustness. Another direction is the incorporation of advanced techniques like attention mechanisms 

and transformers, which have shown success in other fields of deep learning. These methods could 
further enhance the model’s ability to focus on relevant regions within complex medical images. 

Furthermore, the development of automated and adaptive hyperparameter tuning algorithms could 

significantly reduce the need for manual adjustments, making the model more accessible for broader 

clinical use. The use of federated learning also presents an opportunity to train the model on distributed 
datasets across different institutions without compromising patient data privacy. This approach would 

not only improve the generalizability of the model but also address the challenge of data scarcity in 

specific diseases. 
Expanding the dataset to include a wider variety of medical image data, encompassing different 

diseases and diverse patient populations, would further enhance the model's generalization capabilities. 

Disease-specific model adjustments and customizations will be crucial to accommodate the unique 
characteristics of various conditions. For example, adapting the model to detect early-stage cancers, 

neurological disorders, or cardiovascular abnormalities could revolutionize the diagnostic process in 

these fields. 
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7.  Conclusion 

In conclusion, the improved U-Net model holds great promise for playing an essential role in a broader 

range of medical image segmentation tasks. Its application extends beyond COVID-19 to potentially 

transform how diseases are diagnosed, monitored, and treated. With ongoing research and development 
focusing on addressing current challenges, such as computational costs, overfitting, and data diversity, 

the model's effectiveness and versatility will continue to grow. Future advancements in this area could 

lead to more precise, real-time image analysis, ultimately enhancing patient outcomes and advancing 
personalized medicine. 
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