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Abstract. Sentiment analysis is crucial for understanding public opinion, gauging customer 

satisfaction, and making informed business decisions based on the emotional tone of textual data. 

This study investigates the performance of different Word2Vec-based embedding strategies — 

static, non-static, and multichannel — for sentiment analysis across various neural network 

architectures, including Convolution Neural Networks (CNNs), Long Short-Term Memory 

(LSTM), and Gated Recurrent Units (GRUs). Despite the rise of advanced contextual embedding 

methods such as Bidirectional Encoder Representations from Transformers (BERT), Word to 

Vector (Word2Vec) retains its importance due to its simplicity and lower computational 

demands, making it ideal for use in settings with limited resources. The goal is to evaluate the 

impact of fine-tuning Word2Vec embeddings on the accuracy of sentiment classification. Using 

the Internet Movie Database (IMDb), this work finds that multichannel embeddings, which 

combine static and non-static representations, provide the best performance across most 
architectures, while static embeddings continue to deliver strong results in specific sequential 

models. These findings highlight the balance between efficiency and accuracy in traditional word 

embeddings, particularly when advanced models are not feasible. 
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1.  Introduction 

Artificial intelligence (AI) has expanded rapidly in recent years, permeating nearly every aspect of daily 
life. It powers everything from virtual assistants to tools that analyze customer feedback or monitor 

social media trends. The advancement of this technology hinges significantly on its ability to interpret 

and process human language, underscoring the importance of natural language processing (NLP). A 

fundamental aspect of NLP is how machines represent words and their meanings [1]. Word embedding, 
which converts words into dense vector representations, is the foundation of this ability. By capturing 

semantic and syntactic relationships between words, word embedding allows models to analyze textual 

data meaningfully [2,3]. Given the central role of word embeddings in NLP tasks, understanding word 
embeddings is key to grasping how machines process language and improving their performance across 

diverse applications like sentiment analysis, text classification, and machine translation. 

Despite the rapid advancements in NLP, with sophisticated models pushing the boundaries of 
language understanding, traditional embedding techniques like Word to Vector (Word2Vec) continue 

to be valuable [4]. While these newer contextual embeddings dynamically adjust word representations 
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based on the context of a sentence, they come with significant computational costs [5,6]. Word2Vec, on 

the other hand, offers an efficient and low-resource alternative that remains relevant in specific tasks 

and environments. Its low computational cost and simplicity make it particularly useful in resource-
constrained settings, where the overhead of advanced models like Bidirectional Encoder 

Representations from Transformers (BERT) and Generative Pre-trained Transformer (GPT) may not be 

justifiable. Additionally, Word2Vec’s straightforward interpretability gives it a practical edge in cases 
where model transparency is essential [5,7]. 

Recent research has also shown that fine-tuning pre-trained embeddings, particularly in non-static 

Word2Vec models, can further improve classification performance. Non-static embeddings in 

Convolution Neural Networks (CNNs) models consistently outperform static embeddings [8]. 
This paper investigates the performance of different variants of Word2Vec embeddings—static, non-

static, and multichannel—when used in conjunction with various neural network architectures such as 

CNNs, Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs). Through this 
comparison, this work aims to explore how fine-tuning Word2Vec embeddings impacts the performance 

of sentiment analysis tasks while considering both the efficiency and accuracy of these traditional 

embeddings in a resource-constrained setting. 

2.  Methodology 

2.1.  Dataset 

The dataset used in this study is the Internet Movie Database (IMDb) dataset, which was downloaded 

from Kaggle [9]. The dataset consists of 50,000 movie reviews, equally distributed between positive 
and negative sentiments, which is suited for binary classification. Rather than using the pre-divided 

training and test sets provided with the dataset, the entire dataset was randomly split into 80% training 

and 20% test data. 

2.2.  Preprocessing 

Before training the models, several preprocessing steps were applied to the dataset. First, all reviews 

were converted to lowercase, and punctuation was removed to ensure consistency. The text was then 

tokenized using the Natural Language Toolkit (NLTK) library, and common stopwords were removed 
to eliminate words that do not contribute significant meaning to sentiment classification. Next, a 

Word2Vec model was trained on the tokenized training data to create word embeddings with a vector 

size of 100. The reviews were further transformed into sequences of word indices using the Keras 
Tokenizer, and all sequences were padded to a maximum length of 100 tokens to maintain a uniform 

input size. Finally, sentiment labels were converted into binary format, where positive reviews were 

labeled as 1 and negative as 0 to prepare the data for binary classification. 

2.3.  Embeddings 

This study applies the skip-gram model from Word2Vec to generate word embeddings [2]. Mikolov 

proposes two distinct models for crafting these embeddings: Skip-gram and Continuous Bag of Words 

(CBOW). The Skip-gram approach focuses on a single word to predict the words around it. For instance, 
with the word “tennis,” Skip-gram may anticipate related words such as “balls” or “racket,” effectively 

capturing complex meanings in language. CBOW works the opposite way, using surrounding words to 

guess the main word. So, with words like “balls,” “racket,” and “court,” it would predict “tennis.” 
This work chooses the Skip-gram model due to its proficiency in capturing semantic relationships, 

especially in smaller datasets, and its effectiveness in handling rare words [10]. Additionally, Skip-gram 

has consistently shown superior performance to CBOW in sentiment classification tasks because of its 
capacity to produce more meaningful embeddings for less common words [11]. 

Building on the chosen methodology, this work configured the Skip-gram model for specific 

requirements. This work trained the model on tokenized data, selecting a vector size of 100 to represent 

the dimensionality of the word vectors. Additionally, the author set the window size to 5, allowing the 
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model to consider five words before and after the target word. A minimum word frequency threshold of 

5 was imposed to ensure that the vocabulary was limited to words that occur frequently enough to be 

deemed relevant, allowing the model to concentrate on the most significant words in the corpus. 
Once trained, the learned word vectors were stored in an embedding matrix, which was then used to 

initialize the embedding layers for the neural network models. The embedding matrix contained pre-

trained vectors for each word in the vocabulary, with a dimensionality of 100. Inspired by a previous 
art, this work explored three variants in utilizing these embeddings [8]. 

Static Embeddings: Word vectors are initialized using pre-trained Word2Vec embeddings, which 

remain unchanged throughout training. 

Non-static Embeddings: Non-static embeddings are also initialized with pre-trained Word2Vec 
embeddings, but unlike static embeddings, the model is allowed to update these embeddings during 

training. 

Multichannel Embeddings: The multichannel approach combines both static and non-static 
embeddings by processing them through two separate channels in parallel. The static embeddings remain 

frozen during training, while the non-static embeddings are fine-tuned based on the task-specific training 

data. The outputs from the two channels are then concatenated together before being passed to the 
subsequent layers of the neural network. 

2.4.  Architectures of neural networks 

This study implemented five different neural network architectures—CNN, LSTM, Bidirectional LSTM, 

GRU, and Bidirectional GRU—to evaluate the performance of the three embedding strategies: static, 
non-static, and multichannel embeddings. The following sections describe each architecture in detail 

[12]. 

2.4.1.  CNN. CNNs are widely used in text classification due to their ability to capture local word 
patterns, such as n-grams, through convolutional filters. CNNs are particularly effective for shorter text 

sequences like sentiment analysis. This study used filters with kernel sizes of 3, 4, and 5, with each filter 

applying 250 convolutional filters to the text data, followed by a global max pooling operation to reduce 

dimensionality. 

2.4.2.  LSTM. LSTM networks are a type of recurrent neural network designed to capture long-term 

dependencies in sequential data by using memory cells. This work used an LSTM layer with 100 units 

to process the input sequences, making it suitable for tasks where the order of words plays a crucial role. 

2.4.3.  Bidirectional LSTM. Bidirectional LSTMs process input sequences in both forward and backward 

directions, capturing dependencies from both past and future words in the text. The author used a 

Bidirectional LSTM with 100 units in each direction. 

2.4.4.  GRU. GRUs are a more computationally efficient variant of LSTMs, designed to capture long-

term dependencies in text sequences with fewer parameters. This study used a GRU layer with 100 units. 

2.4.5.  Bidirectional GRU. Similar to Bidirectional LSTMs, Bidirectional GRUs capture dependencies 

from both past and future contexts, with the added advantage of computational efficiency. This work 
used 100 units in each direction for the Bidirectional GRU. 

3.  Results and discussion 

3.1.  Training details 
Following the neural network-specific layers, the outputs were passed to a dense layer with 250 units, 

followed by a sigmoid activation for binary classification. All models were trained using the Adam 

optimizer with binary cross-entropy loss. Their performance was evaluated using accuracy. Additionally, 
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early stopping was used to prevent overfitting. The early stopping mechanism monitored validation loss 

and restored the best model weights when no improvement was observed after 20 epochs. This strategy 

allowed the model to terminate training early if further epochs did not improve performance, ensuring 
that all models were efficiently trained without unnecessary tuning. No additional steps, such as 

extensive hyperparameter tuning, were applied beyond early stopping. 

3.2.  Performance comparison 
The results of experiments on the IMDb dataset are presented in the table below. This work evaluated 

the performance of static, non-static, and multichannel Word2Vec embeddings across five different 

neural network architectures, as demonstrated in Table 1, including CNN, LSTM, Bidirectional LSTM, 

GRU, and Bidirectional GRU. 

Table 1. Accuracy comparison with the best score marked in bold. 

Model Static Non-Static Multichannel 

CNN 87.20% 88.75% 89.88% 

LSTM 88.88% 88.45% 88.58% 

Bi-LSTM 88.37% 89.07% 88.35% 

GRU 88.36% 89.01% 89.07% 

Bi-GRU 88.86% 89.18% 89.60% 

  

CNN models with different embedding strategies show a clear trend where multichannel embeddings 
(0.8988) outperform both non-static (0.8875) and static embeddings (0.8720). This is consistent with 

Kim's previous findings (2014), where combining static and fine-tuned embeddings allows the model to 

capture both general and task-specific features, improving accuracy. The significant improvement of 
multichannel embeddings can be attributed to their ability to capture more complex and varied semantic 

relationships. In contrast, though still effective, static embeddings may be limited by their fixed nature. 

For LSTM models, the static embedding variant (0.8888) slightly outperforms both non-static 

(0.8845) and multichannel (0.8858). This suggests that the LSTM's ability to capture long-term 
dependencies in sequences can mitigate some of the limitations of static embeddings. In contrast, 

Bidirectional LSTM (Bi-LSTM) performed best with non-static embeddings (0.8907), suggesting that 

fine-tuning embeddings offers an advantage when processing information from both past and future 
contexts, especially in sentiment analysis, where understanding word nuances in both directions can be 

crucial. 

In the GRU models, multichannel embeddings (0.8907) once again yielded the highest accuracy, 

followed by non-static (0.8901) and static embeddings (0.8836). The trend is similar for Bi-GRU, where 
multichannel embeddings (0.8960) outperformed both non-static (0.8918) and static (0.8886) variants. 

This could be because of GRU’s simplified architecture, making it easier for the model to fine-tune task-

specific embeddings alongside general-purpose ones without overfitting. 
The overall results from the experiments reveal interesting trends in the performance of static, non-

static, and multichannel embeddings across the different neural network architectures. While 

multichannel embeddings performed best for the majority of the results, the relative performance of each 
embedding type varied depending on the architecture used. 

Multichannel embeddings, which combine both static and fine-tuned embeddings, achieved the 

highest accuracy across most models. For example, the CNN-multichannel (0.8988) and bi-GRU-

multichannel (0.8960) models demonstrated the strongest performance. This suggests that leveraging 
both the general knowledge stored in pre-trained embeddings and the task-specific information from 

fine-tuning can provide a performance boost in sentiment analysis tasks. By maintaining one set of 

frozen vectors while allowing another to update, the model benefits from both general word relationships 
and the ability to adapt to specific patterns in the dataset. 
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Non-static embeddings also performed competitively, especially in architectures that are designed to 

capture sequential dependencies, such as LSTM and GRU. For instance, the GRU-non-static (0.8901) 

and Bi-LSTM-non-static (0.8907) models showed high accuracy. In these models, the ability to fine-
tune word embeddings allowed the network to adapt the word vectors based on the task, which proved 

to be advantageous in handling sequential data. However, the performance difference between static and 

non-static embeddings in some cases was minimal, highlighting that fine-tuning embeddings does not 
always guarantee better performance, particularly when the architecture already excels in sequential 

pattern recognition. 

Despite not being updated during training, static embeddings delivered strong performance across 

several models. The LSTM-static model, for example, achieved an accuracy of 0.8888, demonstrating 
that pre-trained embeddings like Word2Vec can still provide a robust foundation for classification tasks, 

especially when used with architectures like LSTM that inherently capture long-term dependencies in 

the data. This indicates that even without task-specific fine-tuning, static embeddings can remain 
effective in certain architectures, particularly those that are well-suited to processing sequential data. 

Overall, the results indicate that multichannel embeddings yielded the best performance in most cases, 

but the gains over non-static embeddings were sometimes marginal. On the other hand, static 
embeddings—despite their simplicity—performed surprisingly well, particularly in sequential models 

like LSTM and GRU, which can compensate for the limitations of fixed word vectors by leveraging 

their ability to capture long-term dependencies in text. 

3.3.  Limitations and future work 
One limitation of this study is its focus on a single task—sentiment analysis using the IMDb dataset. 

While this dataset provides valuable insights into model performance, further experiments on other 

datasets or more complex NLP tasks could offer a broader understanding of how different embeddings 
and architectures perform across various domains. Additionally, although this work fine-tuned non-

static embeddings, no further hyperparameter optimization was performed, leaving room for potentially 

better results with more extensive tuning. 

Future research could explore more advanced fine-tuning techniques for static embeddings to 
enhance performance further. Additionally, comparing the results of these traditional embeddings with 

contextual embeddings like BERT or GPT under similar computational constraints could provide deeper 

insights into the trade-offs between model complexity and efficiency. Finally, experimenting with other 
NLP tasks, such as text summarization or named entity recognition, would help validate the 

generalizability of these findings. 

4.  Conclusion 

This study compared the performance of three different Word2Vec-based embedding strategies—static, 

non-static, and multichannel—across five neural network architectures: CNN, LSTM, Bidirectional 

LSTM, GRU, and Bidirectional GRU. The primary goal was to investigate how fine-tuning static 

embeddings (non-static and multichannel) impacts model performance on sentiment analysis tasks. 
The results indicated that multichannel embeddings, which combine static and non-static embeddings, 

provided the best performance across most neural architectures. The CNN-multichannel and bi-GRU-

multichannel models, in particular, achieved the highest accuracy scores in the experiments, highlighting 
the effectiveness of leveraging both frozen pre-trained embeddings and fine-tuned embeddings. 

However, the non-static embeddings also performed competitively, especially in models designed to 

capture sequential patterns, such as LSTMs and GRUs. The fine-tuning process enabled these 
embeddings to adjust to the specific context of the sentiment analysis task, though the performance gains 

over static embeddings were sometimes modest. Static embeddings, despite not being updated during 

training, showed strong results, particularly in sequential models like LSTM, where the network’s ability 

to capture long-term dependencies compensated for the static nature of the embeddings. 
These findings underscore the use of traditional word embeddings like Word2Vec in modern NLP 

tasks, particularly in resource-constrained environments. While contextual embeddings (e.g., BERT) 
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have become a mainstream method for many tasks, their computational cost may not be feasible in all 

settings. The results suggest that models leveraging static or non-static embeddings can still yield high-

performance levels when computational efficiency and interpretability are priorities. 
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