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Abstract. Smart agriculture refers to the use of modern information technology, Internet of 

Things technology, and artificial intelligence to achieve accurate management, efficient 

operation and sustainable development of the entire process of agricultural production. Smart 

agriculture mainly includes the application of data collection and analysis, intelligent agricultural 

machinery, precise fertilization, disease and pest detection and agricultural products traceability. 

Leaf disease detection and classification are considered as challenging yet important tasks in 

smart agriculture. Deep leaning methods have been proven effective for these image-based 

recognition tasks. In this study, two advanced deep learning methods, namely, Long Short-Term 

Memory (LSTM) and Convolutional Neural Network (CNN) are combined together to achieve 

a further improvement. Numerical results demonstrate that the proposed method outperforms 

both CNN and LSTM variants. 
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1.  Introduction 

With global agriculture facing increasing challenges such as population growth, climate change, and 
diminishing land resources, achieving efficient, sustainable, and environmentally friendly agricultural 
production has become paramount. In response to these challenges, researchers are exploring a range of 
advanced techniques and methods, particularly in the realms of plant health, crop disease detection, and 
agricultural resource management. From deep learning's convolutional neural networks, drone remote 

sensing technology to the Internet of Things (IoT) and edge intelligence, these technologies are 
continuously revolutionizing agricultural practices, making them more precise, resource-saving, and 
high-yielding. Furthermore, hyperspectral imaging technology, smartphone detection methods, and 
various machine and deep learning models have demonstrated tremendous potential for enhancing 
agricultural productivity, minimizing losses from diseases and pests, and achieving sustainable 
development goals. Hence, the integrated application of modern agricultural technology holds profound 
significance not only in bolstering global food security but also in conserving the environment and 

promoting sustainable agricultural advancement. 
Numerous studies have focused on diverse techniques and methods in the field of agriculture, 

particularly for plant and crop health detection. Bhagat and Kumar [1] reviewed classification methods 
based on leaf diseases, emphasizing the importance of features, such as shape, color, and texture, and 
outlined the current state of various technologies. To this end, Dudi and Rajesh [2] proposed a plant leaf 
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classification model based on hybrid optimization algorithms and enhanced segmentation, 
demonstrating high accuracy. Kanda et al. [3] and Albattah et al. [4] employed deep learning approaches, 
such as Conditional Generative Adversarial Networks, convolutional neural networks, and frameworks 
based on CenterNet and DenseNet-77, for efficient plant and plant disease categorization. 

In specific applications, Gashaw Ayalew and his team [5] explored the Gabor wavelet technique for 
wild blueberry field scenes. Huang et al. [6] employed CNN models to classify a tomato pest image 
dataset, complemented by traditional machine learning methods for optimization. By integrating it with 
traditional agriculture, Liu et al. [7] examined the applications of edge intelligence and drone remote 
sensing in precision agriculture, emphasizing the value of edge intelligence. Nagaraju et al. [8] proposed 
two novel learning algorithms for image preprocessing and segmentation to address dataset and model 
overfitting issues. Moreover, several deep learning models, such as the EfficientNetB0 and 
DenseNet121 combination by HASSAN AMIN et al. [9] and the MCPE method and EnsembleNet 

combination by Bo Li et al. [10], have provided high-accuracy solutions for plant disease categorization. 
More broadly, Prabira Kumar Sethy et al. [11] discussed the applications of hyperspectral imaging 

technology in agriculture, underscoring its significance in agricultural product information. Qazi et al. 
[12] investigated the integration of the IoT and artificial intelligence in smart agriculture and projected 
future development trends. Various specific technologies, such as MobOca_Net by Chen [13], RGB and 
thermal imaging techniques by Hespeler et al.[14], convolutional neural networks combined with 
support vector machines by Turkoglu [15], and smartphone detection methods by Butera [16], have been 

applied to various agricultural challenges. 
Although there have been many relevant studies, we found that the current mainstream model is a 

CNN-based deep-learning model. However, a hybrid model of a CNN and LSTM has not yet been 
developed. The proposed CNN-LSTM hybrid model in this study can be effectively used to detect and 
classify leaf diseases. The evaluation results based on a publicly available dataset show that the proposed 
CNN-LSTM hybrid model outperforms advanced CNN models, including MobileNe and DenseNet.  

The remainder of this paper is organized as follows. Related work is discussed in Section 2. The 

proposed CNN-LSTM hybrid model is introduced in Section 3. Numerical experiments are presented in 
Section 4. Finally, conclusions are presented in Section 5. 

2.  Related work 

In this section, we provide a literature summary related to image recognition in the domain of smart 
agriculture. The aim of this chapter is to review and compare some of the key relevant publications to 

assist readers in quickly grasping the essence of this research area. Given space constraints, we limited 
our scope to include only articles published within the last three years, discussing the most recent 
advancements in this research field. 

2.1.  Relevant Surveys and Reviews 
This chapter presents a comprehensive overview of key reviews relevant to the domain of smart 

agriculture. Given the extensive literature available on the subject, revisiting these seminal reviews is 
essential for providing readers with a structured understanding of the broader research landscape. The 
reviews focused not only on image recognition in smart agriculture but also extended to interdisciplinary 
areas, including the Internet of Things (IoT), edge computing, and remote sensing. 

Bhagat and Kumar [1] conducted a systematic review of literature pertaining to leaf disease detection 
and classification. They begin by delineating various types of leaf diseases, such as Biotic and Abiotic, 
and substantiate their categorizations with relevant images. Furthermore, 179 studies, including noise 

removal, image conversion, and segmentation, were analyzed, providing insights into the preprocessing 
techniques employed. Techniques, such as SURF, SIFT, PCA, and LDA, have been discussed in the 
realm of feature extraction and selection. Their findings indicate a discernible trend towards the 
utilization of statistical learning models, notably SVM, and deep learning approaches primarily based 
on CNNs. Their review concludes by identifying gaps in current research and suggesting avenues for 
future exploration, emphasizing the potential of online detection and classification systems. 
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Liu et al. [7] offered insights into deep learning applications for smart agriculture, particularly 
focusing on the integration of Unmanned Aerial Vehicles (UAVs) and Edge Intelligence. They adopted 
a systems-oriented approach, classifying and discussing various available drones and sensors. Their 
analysis revealed the advantages and limitations of each type. With respect to UAV remote sensing 

image processing, prevalent methodologies, specifically CNNs and RNNs, have been underscored. In 
addition, they delved into the potential of edge computing, providing an overview of the common 
hardware utilized in this domain. 

Sethy et al. [11] focused their review on the application of remote sensing images in precision 
agriculture with a specific emphasis on hyperspectral imagery. They highlighted the capability of 
hyperspectral images to capture both the external physical and internal chemical properties of crops 
rapidly. Their analysis identified the predominant role of CNN-based methodologies in processing such 
images. 

Qazi et al. [12] presented a holistic review of the confluence of the IoT and artificial technologies in 
smart agriculture. They provide a structured overview of IoT communication, control, and sensing 
technologies, juxtaposing them with contemporary technological solutions. In parallel, they discuss AI 
applications in smart agriculture and pinpoint areas such as plant disease detection. Their review 
underscores certain limitations of current methodologies and advocates for future research trajectories, 
particularly the integration of AI image recognition with edge-computing systems. 

2.2.  Relevant Studies 

This section discusses extant research efforts pertinent to this topic. Given the central theme of this paper, 
deep learning methodologies the studies encompassed here predominantly pertain to image 
classification models and approaches rooted in deep learning. 

2.2.1.  Artificial Neural Networks (ANNs) 

ANNs epitomize the foundational structure of neural networks and primarily leverage feed-forward 
connections coupled with backpropagation. With their straightforward architecture and ubiquitous 
applicability, when combined with conventional feature extraction techniques, ANNs can efficiently 
facilitate agricultural image recognition with minimal computational overheads. However, a limitation 
of ANNs is their performance, which tends to be subpar with that of RNNs and CNNs. 

Ayalew et al. [5] proposed an agricultural scene classification scheme based on Gabor wavelet 

features that achieved an approximate classification accuracy of 90% using image data. Subsequently, 
Ayalew et al. introduced a feature selection strategy based on Linear Discriminant Analysis (LDA), 
which not only ameliorated the model's classification capabilities but also curtailed computational 
expenses. 

2.2.2.  Recurrent Neural Networks (RNNs) 

RNNs, originally conceptualized for processing sequential data, encompass enhanced architectures such 
as LSTM and Gated Recurrent Units (GRU). These networks have also been tailored for image data 
processing and have demonstrated promising outcomes. 

Dudi and Rajesh [2] unveiled a novel algorithm called Crow-Electric Fish Optimization (C-EFO) 
tailored for efficacious feature extraction. By harnessing the extracted features, they introduced an 
augmented RNN model dedicated to plant-leaf classification. When juxtaposed with traditional machine 
learning methodologies, their avant-garde approach manifested an accuracy enhancement ranging from 

2% to 5%. 

2.2.3.  Convolutional Neural Networks 
CNNs have become the mainstream deep learning technique for image processing, as confirmed by the 
aforementioned overview, and have proven to be particularly effective in agricultural image processing. 
A myriad of studies have focused on CNN-based agricultural image processing. This section provides 

an overview of the most representative studies in this domain. 
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Model structures and their enhancements are often a focus of research. Kanda et al. [3] introduced a 
plant leaf classification approach based on data generation and CNNs, where a Conditional Generative 
Adversarial Network (CGAN) was employed for generating new image samples, CNNs for feature 
extraction, and Logistic Regression for classification. This approach achieves an average accuracy of 

96%. Albattah et al. [4] proposed an improved DenseNet model for plant disease detection and 
classification, by introducing an improved CenterNet for deep keypoint extraction. 

Furthermore, there is an abundance of research centered on data augmentation and sample generation. 
Hu and Fang [18] addressed the problem of tea leaf disease detection and proposed a solution using 
multi-convolutional neural networks. To address the small-sample problem inherent in this issue, Hu 
and Fang suggested a SinGAN model based on GANs to generate new training samples. Nagaraju et al. 
[8] addressed the challenges of acquiring agricultural image data because of their high cost and scarcity. 
They introduced two learning algorithms to expand and enhance the dataset. The experimental results 

revealed that the data augmentation techniques further improved the detection performance of CNN 
models. 

Regarding specific agricultural challenges and their corresponding solutions, Al-Gaashani et al. [17] 
focused on the classification of tomato leaf disease. They presented a solution that combines transfer 
learning and feature concatenation, which is suitable for deployment on mobile devices. Specifically, 
they utilized pre-trained MobileNetV2 and NASNetMobile for feature extraction, followed by kernel 
principal component analysis, culminating in classification using conventional learning models. The 

evaluation results show an impressive accuracy of up to 97%. Butera et al. [16] employed various object 
detection models on leaf images from different sources, and assessed their performance based on the 
detection accuracy and computational resources required. They found that, among the prevalent 
detection models, FasterRCNN based on MobileNetV3 exhibited superior performance, making it 
suitable for smart agriculture scenarios. Turkoglu et al. [15] introduced a CNN ensemble model called 
PlantDiseaseNet for plant disease and pest detection. The model incorporated six different CNNs for 
feature extraction, with each feature set serving as the input for the SVM models, resulting in a 

classification accuracy of 97.56%. Hespeler et al. [14] explored non-destructive thermal images and 
employed object detection models such as Mask-RCNN and YOLOv3 for robotic inspection and 
harvesting of chili peppers. They highlighted the superior efficiency of the YOLOv3 algorithm over 
Mask-RCNN, boasting a computational speed of over ten times faster. This study offers novel insights 
for deep learning applications in smart agriculture. Building on the MobileNet model, Chen et al. [13] 
designed an improved model, MobOca_Net, for potato leaf disease recognition. In MobOca_Net, an 
attention mechanism was integrated with the pre-trained MobileNet model, achieving a reasonable 
accuracy rate of 97.73%. Li et al. [10] presented a CNN-based method called the multi-class plant 

ensemble net (MCPE), which employed data augmentation strategies to enhance the dataset and utilized 
an EnsembleNet consisting of four CNNs for plant species classification. By introducing a novel 
activation function and training individual disease classifiers for each plant, they were able to identify 
disease types and severities across over 40,000 images of 10 plant species with 61 distinct diseases, 
achieving a recognition rate of 97.5%, surpassing existing technologies. Amin et al. [9] investigated the 
corn leaf disease classification problem and assessed a hybrid deep-learning model based on 
EfficientNetB0 and DenseNet121. Additional data augmentation techniques are introduced to diversify 

the training images. Their proposed approach achieved an accuracy of 98.56%. Huang et al. [11] focused 
on the application of deep learning in the growth stages of chili seeds, rather than on conventional 
disease detection. They utilized a model based on DenseNet201 and employed transfer learning, 
achieving a remarkable growth stage recognition accuracy of 95.5%. For soybean cultivation, Sankaran 
et al. [12] leveraged a Faster R-CNN-based method for weed detection and classification, enabling a 
more efficient herbicide application process. Their deep learning-based method proved capable of 
distinguishing between various weeds and soybean plants. 

Although deep learning has made significant progress in agricultural image processing, numerous 
challenges remain [19]. For example, constraints on computational resources, and time restrictions must 
be considered in real-time processing applications [20]. Moreover, a wealth of research has underscored 
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the importance of data augmentation and multimodel fusion techniques in enhancing model performance, 
paving the way for future research [21]. 

2.2.4.  Summary 

Based on our analysis of the existing literature, we observe that the predominant solutions are centered 
on CNN-based models, whereas research on models based on RNNs remains relatively sparse. By 
integrating CNN with LSTM models, we can further harness the strengths of different models, achieving 
superior performance compared to using CNN models alone. 

3.  Model Description 

The proposed CNN-LSTM hybrid model combines convolutional layers for feature extraction and an 
LSTM layer for sequence processing, efficiently addressing image classification tasks. 

3.1.  Convolutional Neural Network 
CNNs have been turally crafted to specifically cater to the processing of two-dimensional data structures, 

most notably images. Within the CNN framework, the convolutional layer plays a pivotal role, operating 
as a latent layer. Within this convolutional stratum, each cluster of neurons, colloquially referred to as 
filters, executes a convolution operation on the image data. It is imperative to note that although each 
neuron within a filter connects to a unique region of the image, they uniformly share identical weight 
parameters. 

Given the potentially expansive resolution of input images, an operation known as max pooling is 
frequently incorporated into CNN architectures. The objective of max pooling is to downscale the spatial 

dimensions of the original image. This was achieved by applying a maximum filter to the non-
overlapping segments of the preliminary image. The intricacies of both the convolution and max-pooling 
operations can be elucidated through schematic representations. This specialized network design 
demonstrates the efficacy of feature extraction from images, thereby exhibiting superior performance in 
tasks related to image recognition and categorization. 

3.2.  Long Short-Term Memory 

A RNN is designed to handle sequential dependencies by adding previous outputs as inputs while 
maintaining hidden states. This makes RNNs adept at managing sequential data such as natural language 
or time series. To address the vanishing gradient problem, LSTM units were introduced. LSTMs are 
variants of RNNs designed specifically to mitigate the vanishing gradient issue. The LSTM architecture 
consists of a series of cells, each containing three essential gating mechanisms: a Forget Gate, Input 
Gate, Output Gate. 

Forget Gate: Determines which information should be discarded or retained from the cell state. It is 
defined by the equation 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) 
Input Gate: Decides which new information will be stored in the cell state. This gate can be described 

by the following set of equations. 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) 
𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 +𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐�̃� 
where denotes a matrix of new candidate values that can be added to the cell state. 

Output Gate: Determines the information output from the cell state. It can be described by: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) 
ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ( 𝑐𝑡) 

LSTM units are designed to remember information over long periods, making them particularly 
suitable for tasks that require the model to learn from long sequences of data. The gating mechanisms 
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ensure that the network learns which information to store, which to update, and which to discard, thereby 
mitigating the vanishing gradient problem faced by traditional RNNs. 

3.3.  CNN-LSTM Hybrid Model 

The CNN-LSTM hybrid model structure begins with an input layer whose dimensions are defined by 
the specific application at hand. For instance, this could entail the height, width, and color channels of 
an image or the number of frames and dimensions of each frame in a video sequence. In the context of 
image processing, the input layer is responsible for conveying the raw pixel values of the image data. 

 

Figure 1. The CNN-LSTM hybrid model structure. 
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Following the input layer, the first principal component of the model was a series of convolutional 
layers. Within the specified structure, there were two convolutional layers, each utilizing 32 filters with 
a kernel size of 3 × 3. These filters slide across the input image to learn features ranging from the edges 
and corners to more complex patterns. Each convolutional layer is typically succeeded by a nonlinear 

activation function, such as ReLU, to introduce nonlinearity, enabling the network to learn more intricate 
patterns. 

Subsequent to the convolutional layers is a max-pooling layer utilizing a 2 × 2 window to reduce the 
spatial dimensions of the feature maps. This max-pooling operation aids in decreasing the number of 
parameters, prevents overfitting, and makes the feature detection invariant to minor positional changes. 

After the second convolutional layer, the model incorporated a dropout layer set at a rate of 20%. 
The Dropout layer randomly zeroes a portion of the network connections during training to reduce 
overfitting and to enhance the generalization capability of the model. Following the Dropout layer, a 

flattened layer converts the two-dimensional feature maps into a one-dimensional feature vector, which 
is suitable for processing by the LSTM layer. 

The transformed one-dimensional feature vector is then fed into a LSTM layer containing 128 
neurons. The LSTM layer is capable of processing sequential data and is adept at remembering and 
utilizing temporal information, which is crucial for tasks involving a time dimension. 

Finally, the model culminates in a fully connected output layer. Depending on the application 
requirements, the output layer can be configured with either two or four neurons. For instance, in a 

binary classification task, the output layer may consist of only two neurons corresponding to the 
probabilities of the two classes. In a quadruple classification scenario, there are four neurons, each 
representing the probability of one class. The output layer typically employs a softmax activation 
function to provide a probability distribution, allowing the network output to be interpreted directly as 
the likelihood of each category. 

In summary, the convolutional layers were tasked with extracting useful spatial features from the 
input data, while the LSTM layer was designed to handle the dynamics of these features over time. This 

architecture is particularly suited to tasks that encompass both spatial and temporal features, such as 
video processing and sequential image recognition. 

4.  Experiments and Discussion 

4.1.  Dataset Description 

The dataset referred to in this paper is the LeLePhid dataset, which is a collection of 665 photographs 
that capture the top and back of lemon tree leaves. This dataset is particularly focused on the detection 
of leaf damage caused by aphids, a significant pest that causes damage to crops worldwide by leaving 
visible spots on the leaves. Such a characteristic feature allows for the potential application of the dataset 
not only for lemon trees, but also for other crops affected by aphids. 

The LeLePhid dataset was balanced in terms of its composition, containing an equal division between 

healthy leaves and those infested by aphids, with 335 images for each category. The data collection 
process was meticulous and carried out manually in citrus crops under varying weather conditions 
conducive to crop growth, that is, warm and rainy periods. Notably, the capture of data did not occur in 
a controlled environment but rather under natural conditions, including cloudy, sunny, rainy, and windy 
weather, introducing a variety of uncontrolled variables into the dataset. 

The photographs within the dataset show high color similarity and are characterized by the presence 
of noise and variation. These variations are manifested in terms of the position, chromaticity, structure, 

and size of lemon leaves. This complexity ensures that the dataset presents a realistic challenge for the 
CNN-LSTM hybrid model, with the aim of robustly detecting and classifying the presence and severity 
of aphid infestation despite noise and variations in the dataset. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/104/20240902 

13 



  
(a) infested image sample (b) healthy image sample 

Figure 2. Data examples. 

4.2.  Settings 
a) Programming Language & Hardware Configuration 

The computational experiments in this study were executed using Python as the programming 

language of choice, leveraging robust libraries such as TensorFlow and Keras for the implementation of 
deep learning models. The hardware configuration on which the models were trained and tested 
consisted of a desktop running Windows 10 equipped with an Intel Core i5-9600K CPU operating at 
3.70 GHz. The system also included a GPU, specifically an NVIDIA GeForce RTX 2070, which 
provided the necessary computational power for handling intensive tasks associated with deep learning. 
In addition, the machine was provisioned with 32 GB of RAM to ensure efficient data-handling and 
processing capabilities. 

To achieve a thorough training process, each model underwent a training period spanning 30 epochs, 
with a batch size of 8. This setup was chosen to balance the computational load and granularity of the 
model updates, thereby facilitating a conducive learning environment for the neural network to learn 
accurately from the dataset. 

b) Evaluation metrics 
In the methodology section of the research paper, we describe the evaluation metrics used to assess 

the performance of the proposed model. The primary metrics include accuracy, F1 score, and confusion 

matrix, which together offer a comprehensive view of the model's predictive capabilities. 
The confusion matrix is a fundamental tool in machine learning classification, providing insights into 

the true positive (TP), false positive (FP), false negative (FN), and true negative (TN) predictions made 
by the classifier. This matrix forms the basis for computing the various performance metrics. 

Accuracy is the most intuitive performance measure, and is simply the ratio of correctly predicted 
observations to the total number of observations. This is formulated as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 

The F1 score is the harmonic mean of the precision and recall, providing a balance between the two 
in cases where one may be more important than the other. It is defined as: 

𝐹1 = 2×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

where precision and recall are given by: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The choice to use these particular metrics is justified by the nature of the dataset and the binary 
classification task at hand, allowing us to effectively measure both the accuracy of the model and its 
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ability to manage the trade-off between precision and recall, which is particularly important in medical 
and agricultural diagnostic applications, where the costs of false negatives and false positives can be 
significant. 

c) Baselines – MobileNet & DenseNet 

MobileNet stands out against traditional deep learning models because of its unique convolution 
approach. Instead of using standard convolutions, it employs depth-wise separable convolutions that 
separate the filtering and combination steps. This results in a model with fewer parameters and 
computational steps, enabling faster operation with less impact on the performance. Its architecture is 
tailored for environments where computational resources are limited, such as mobile devices or 
embedded systems, allowing for the deployment of complex models that previously could not run 
effectively. 

DenseNet, on the other hand, excels in feature utilization and conservation. By connecting every 

layer to every other layer, DenseNet ensures that the features extracted at every level are used to their 
fullest extent. Moreover, because each layer has access to all preceding layers' feature-maps, it leads to 
improved feature propagation and helps in reducing the vanishing gradient problem. This makes 
DenseNet particularly effective in tasks that benefit from deep feature exploration, like detailed image 
classification, without the excessive computational burden usually associated with deeper networks. 

4.3.  Results 

The proposed CNN-LSTM hybrid model is compared to standalone CNN models, specifically 
MobileNet and DenseNet. Performance metrics such as the number of parameters, accuracy, and F1 
scores are discussed, providing a quantitative basis for model comparison. 

The complexity of a model is often indicated by its number of parameters. Table 1 illustrates the 
parameter count for each model. The CNN-LSTM hybrid model has significantly fewer parameters than 
DenseNet, suggesting a more efficient model that could be advantageous in resource-constrained 

environments. 

Table 1. Model parameters. 

Model Parameters 

MobileNet 18,315,074 

DenseNet 42,407,234 

CNN-LSTM Hybrid 8,872,692 
 

As shown in Table 2, the proposed CNN-LSTM hybrid model achieved the highest accuracy and F1 
scores for leaf disease detection. Similarly, the proposed CNN-LSTM hybrid model achieved the highest 
accuracy and F1 scores for leaf disease classification, as shown in Figure 3. 

Table 2. The accuracy and F1 scores for leaf disease detection. 

Model Accuracy F1 Score 

MobileNet 0.8241 0.8240 

DenseNet 0.8948 0.8946 

CNN-LSTM Hybrid 0.9714 0.9713 

Table 3. The accuracy and F1 scores for leaf disease classification. 

Model Accuracy F1 Score 

MobileNet 0.8195 0.8137 

DenseNet 0.8932 0.8921 

CNN-LSTM Hybrid 0.9549 0.9547 
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The confusion matrices for leaf disease detection and classification of the proposed CNN-LSTM 
hybrid model are further shown in Figure 3. 

 
 

(a) Leaf disease classification. (b) Leaf disease classification. 

Figure 3. Confusion matrices of the proposed CNN-LSTM hybrid model. 

In evaluating the impact of model parameters on the performance of the CNN-LSTM hybrid model, 
we consider the number of layers and neurons within the network. Here, we present a brief discussion 
on how varying these parameters may influence the model's effectiveness in detecting and classifying 
leaf diseases. 

(a) CNN Layer Number 

The number of convolutional layers in a CNN affects the model's ability to capture hierarchical 
features, as shown in Figure 4. 

 1 Layer: May only capture basic features and might be insufficient for complex image classification 
tasks. 

 2 Layers: Can extract more sophisticated features by building on the initial layer's outputs. 
 3 Layers: Allows for an even deeper hierarchy of features, potentially improving classification 

accuracy for more complex patterns. 

 

Figure 4. The influence of the CNN layer number. 
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(b) LSTM Layer Number 
The number of LSTM layers impacts the model's temporal feature extraction capabilities, as shown 

in Figure 5. 
 1 Layer: Suitable for capturing short-term dependencies in sequence data. 

 2 Layers: Improves the model's ability to understand longer-term dependencies, which may be 
necessary for more complex sequences. 

 3 Layers: Enables the model to learn even longer and more abstract temporal patterns, although it 
may increase the risk of overfitting and require more data. 

 

Figure 5. The influence of the LSTM layer number. 

(c) CNN Filter Number 
The number of filters in each convolutional layer determines the breadth of features the model can 

detect, as shown in Figure 6. 
 16 Filters: May be sufficient for simple or less varied images. 
 32 Filters: Provides a broader set of features that can be useful for more varied data. 

 64 Filters: Captures a wide variety of features, which is beneficial for complex images but increases 
computational complexity. 

 

Figure 6. The influence of the CNN filter number. 
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(d) LSTM Neuron Number 
The number of neurons in LSTM layers affects the model's capacity to process and remember 

information, as shown in Figure 7. 
 64 Neurons: May limit the model's memory capability for complex patterns. 

 128 Neurons: A balanced choice that offers improved memory while keeping computational 
demands reasonable. 

 256 Neurons: Maximizes the model's memory capability, allowing it to handle very complex 
sequences at the cost of increased computation. 

 

Figure 7. The influence of the LSTM neuron number. 

The CNN-LSTM hybrid model's performance suggests that the integration of temporal sequence 
processing via LSTM layers with spatial feature extraction via CNN layers results in a more powerful 
model for image classification tasks. The results demonstrate the potential of this hybrid approach in 

accurately identifying and classifying leaf diseases, which could significantly impact precision 
agriculture practices. 

Careful attention should be paid to the model's limitations, including potential biases in the dataset 
and the generalizability of the model to different crops or disease types. Future work may explore the 
application of this model to a broader range of agricultural challenges and the integration of additional 
data sources for enhanced model robustness. 

5.  Conclusion 

This research has presented a comprehensive study on the application of CNN and LSTM networks for 
the detection and classification of leaf diseases. The developed CNN-LSTM hybrid model demonstrates 
a significant improvement in accuracy and F1 scores over traditional CNN models such as MobileNet 
and DenseNet, thereby highlighting the effectiveness of combining spatial and temporal feature 
extraction techniques for image classification tasks. 

The evaluation of model parameters, such as the number of CNN and LSTM layers, number of filters, 
and number of LSTM neurons, indicates that a balanced approach to model complexity can yield high 
accuracy while maintaining computational efficiency. The hybrid model, with its fewer parameters 
compared to the more complex DenseNet, affords a more practical solution in resource-constrained 
environments, potentially facilitating real-time analysis and decision-making in precision agriculture. 

The confusion matrices derived from the model's performance offer valuable insights into its 
predictive capabilities, ensuring that the model not only achieves high overall accuracy but also 
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maintains a low rate of false positives and negatives, which is crucial in the agricultural context where 
misdiagnoses can lead to significant economic losses. 

Future work may focus on further optimization of the model architecture, expanding the dataset to 
include a more diverse range of leaf diseases, and exploring the model's generalizability to other crops 

[22, 23]. Additionally, integrating the model into a real-world agricultural decision support system 
would be a logical next step towards operationalizing the benefits of this research. 
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