

Secure Search of Smart Home Data Based on Access Control
Encryption

Jingda Jia1,a,*, Zhenhua Chen1,b

1College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an ,

710054, China

a. 21308223010@stu.xust.edu.cn, b. czh333330@163.com

*corresponding author

Abstract: In recent years, the increasing variety of smart home devices, such as smart locks,

surveillance cameras, and various sensors, has led to a significant rise in related data. To

facilitate the sharing of smart home data, manufacturers store these data on the Internet of

Things (IoT). However, since IoT servers are not fully trustworthy and the data often contain

sensitive commercial information, any leakage could result in a commercial crisis for

manufacturers. To address security concerns, manufacturers encrypt the data before storing

them on the IoT. A challenge arises: how can users search for target data in encrypted form?

This paper proposes a new search encryption scheme for smart home data, addressing the

limitations of existing attribute-based encryption (ABE) searchable encryption schemes. The

proposed scheme integrates access control trees and bilinear mapping technology, supporting

multiple access policies including “AND” gates, “OR” gates, and “threshold” gates.

Experimental results demonstrate a comprehensive analysis of the attribute-based searchable

encryption protocol under a multi-authority architecture, covering four dimensions:

correctness, security, complexity, and real-world application scenarios. In specific scenarios,

when a data user, out of privacy concerns, is unwilling to reveal all attribute information to a

single authority during a query for shared data—thus avoiding identity disclosure—or when

the user’s identity information is managed by multiple independent authorities, this protocol

proves highly effective. It ensures smooth data sharing while maintaining data security for

both data owners and users, fully safeguarding data privacy and shareability.

Keywords: Attribute-based encryption, Searchable encryption, Smart home data.

1. Introduction

With the widespread adoption of cloud computing, more and more data is being stored in the cloud.

However, this also brings challenges regarding data security and searchability. To ensure data security,

we need a protocol that not only guarantees the security of data stored in the cloud but also ensures

its searchability, while providing users with access to the appropriate data based on their identity [1].

In current research, secure searchable encryption protocols based on attribute-based encryption (ABE)

have made some progress. However, these protocols still face unresolved issues. For example, some

protocols cannot simultaneously support access control strategies using “AND” gates, “OR” gates,

and “threshold” gates, which limits their flexibility in practical applications [2]. Additionally, the

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

110

high computational complexity of some protocols makes them difficult to implement in real-world

applications.

To address these issues, further research and improvements on existing protocols are needed. First,

we need to design a protocol that can simultaneously support multiple access control strategies to

meet the needs of different scenarios. Second, we need to optimize the computational complexity of

the protocol to ensure efficient operation in practical applications. Moreover, we must consider how

to deploy and implement these protocols in real-world applications to maximize their effectiveness.

2. System Model and Security Model

2.1. System Model

The deployment of smart home systems raises concerns about security and privacy protection.

Sensors collect sensitive user data, such as sleep patterns and health indicators, which are transmitted

through the home network, posing security risks. Users are concerned that devices may leak private

data, especially when common devices like temperature sensors transmit data to the gateway, which

could be vulnerable to eavesdropping [3], as shown in Figure 1. Therefore, enhanced security

measures such as encrypted communication and access control are necessary to protect user privacy

and data security. Both users and manufacturers must work together to raise security awareness and

ensure the system operates in a secure environment.

Figure 1: Smart Home Architecture

The protocol proposed in this paper is based on a system model that includes three entities: data

owners, cloud servers, and data users. This system model is illustrated in Figure 2, showing the

interaction of these three entities across the following three phases.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

111

Figure 2: Single-Authority System Model

Phase 1: Data Upload and Encryption. Before uploading files to the cloud server, the data owner

generates a keyword index list and encrypts it, embedding an access control tree to define the access

policy. The encrypted file and index are then uploaded to the server.

Phase 2: Permission Allocation. The data user requests access from the data owner, who allocates

an attribute set and key according to the user’s needs, ensuring fine-grained access control.

Phase 3: Data Retrieval. The data user uses the key to generate a trapdoor, which is sent to the

cloud server to search for data. The server executes the algorithm and returns the result set, ensuring

data security and user privacy throughout the process.

2.2. Protocol Definition

Before detailing the construction of the proposed protocol, this section provides a formal definition

of the protocol to be introduced.

Definition 3: A single-authority, attribute-based searchable encryption protocol consists of the

following five polynomial algorithms:

(1) (𝑃𝑃, 𝑠𝑘1 , 𝑠𝑘2) ← 𝑠𝑒𝑡𝑢𝑝(1𝜆): This algorithm is executed by the data owner to initialize the

entire protocol. It takes the security parameter λ as input and outputs a set of public parameters PP

that can be accessed by all entities in the system, a key set 𝑠𝑘1 used to generate query permissions

for the data users, and a key 𝑠𝑘2 used to construct secure search indices.

(2) 𝐶𝑇𝑤 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐼𝑛𝑑𝑒𝑥(𝑃𝑃, 𝑠𝑘2 , 𝑤, 𝑇𝑤) : This algorithm is invoked by the data owner to

encrypt keywords in the index list. It uses the public parameters PP and the key 𝑠𝑘2 to generate the

corresponding ciphertext based on the input keyword w and the access control tree 𝑇𝑤, which is

defined by the data owner to determine access permissions [4].

(3) 𝑆𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑃𝑃, 𝑠𝑘1 , 𝑆): When a data user wishes to join the system and access data,

they need to request permission from the authority (i.e., the data owner). The data owner determines

the user’s attribute set and uses the public parameters PP and key 𝑠𝑘1 to generate a key set SK

corresponding to the data user’s permissions based on their attribute set S.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

112

(4) 𝑇𝑟(𝑤) ← 𝑇𝑟𝑝𝑑𝑟𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑃𝑃, 𝑆𝐾, 𝑤): This algorithm is executed by the data user when they

want to query files corresponding to a keyword. The algorithm uses the public parameters PP and the

user’s key SK to generate a trapdoor for the input keyword w.

(5) 1/⊥= 𝑠𝑒𝑎𝑟𝑐ℎ(𝑃𝑃, 𝐶𝑇𝑤0
, 𝑇𝑟(𝑤)): This algorithm is executed by the cloud server to check

whether the trapdoor of the query keyword received from the data user matches the encrypted

keyword in the index list. The algorithm takes the public parameters PP, the trapdoor Tr(w) of the

query keyword w from the data user, and the ciphertext 𝐶𝑇𝑤0
 of the encrypted keyword 𝑤0 from the

secure index list as input to determine whether Tr(w) and 𝐶𝑇𝑤0
 match. If the key SK associated with

the user’s attributes matches the access control tree 𝑇𝑤0
 in 𝐶𝑇𝑤0

 and w equals 𝑤0, the algorithm

returns 1, and the cloud server returns all data files corresponding to the keyword 𝑤0 to the user.

Otherwise, the algorithm returns ⊥, and the cloud server does not return any data files corresponding

to the keyword 𝑤0 [5].

2.3. Security Model

The cloud server is considered “honest but curious,” meaning it provides normal services while

attempting to extract user data. To ensure security, encryption algorithms are used to protect data files,

and the security of encrypted and query keywords is verified through the “adaptive chosen keyword

attack game” and the “chosen plaintext attack game.” These games simulate interactions between a

challenger and a polynomial-time adversary to prove that the protocol can effectively prevent

unauthorized users from obtaining plaintext information, thus ensuring user data privacy and security.

Definition 1: Adaptive Chosen Keyword Attack Game.

Setup: The challenger B sends the system’s public parameters to the adversary A.

Step 1: A adaptively requests a set of query trapdoors 𝑞1 , 𝑞2 , . . . 𝑞𝑚 based on the attribute sets

𝑆1, 𝑆2, . . . 𝑆𝑚 from the challenger B, as well as the ciphertexts of a set of keywords 𝑤1 , 𝑤2, . . . 𝑤𝑚.

Challenge: A defines an access control tree T’ that does not match any of the attribute sets

𝑆1, 𝑆2, . . . 𝑆𝑚 from Step 1. A randomly selects two keywords 𝑤0 and 𝑤1 and sends them to B along

with T’. B randomly selects a number 𝑏 ∈ {0,1}, encrypts the keyword 𝑤𝑏 using T’, and returns
[𝑤𝑏] to A.

Step 2: A queries the trapdoor for keyword q based on the attribute set 𝑆𝑞. The two conditions

“𝑞 = 𝑤0/𝑤1” and “𝑆𝑞 satisfies T’“ cannot occur simultaneously.

Guess: A guesses the value of b and outputs b’.

We denote the advantage of a polynomial-time adversary A in the above game as:

𝐴𝑑𝑣 = |𝑃𝑟 [𝑏′ = 𝑏] −
1

2
| (1)

Definition 2: Chosen Plaintext Attack Game.

Setup: The challenger B sends the system’s public parameters to the adversary A.

Step 1: A requests the ciphertexts of a set of keywords 𝑤1 , 𝑤2, . . . 𝑤𝑚 from B.

Challenge: A sends two keywords 𝑤0 and 𝑤1 ₁ to B. B randomly selects a number 𝑏 ∈ {0,1},
encrypts the keyword 𝑤𝑏 using T’, and returns [𝑤𝑏] to A.

Step 2: A continues to request a series of ciphertexts for other keywords except for 𝑤0 and 𝑤1.

Guess: A guesses the value of b and outputs b’.

We denote the advantage of a polynomial-time adversary A in the above game similarly to

Equation (1).

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

113

3. Protocol Construction

The cloud server is considered “honest but curious,” meaning it provides services while also

attempting to extract data. We use encryption to protect the data and validate keyword security

through secure game models, ensuring user privacy and security.

3.1. Initialization Algorithm

In the system initialization phase, the data owner first selects a cyclic multiplicative group 𝐺1 with

an order of q and generator 𝐺𝑇, forming a bilinear map 𝑒: 𝐺1 × 𝐺1 → 𝐺𝑇. Additionally, two hash

functions are defined during this phase:

(1) 𝐻1: {0,1}
∗ → 𝑍𝑝

∗, which maps strings of arbitrary length into elements of 𝑍𝑝
∗.

(2) 𝐻2: {0,1}
∗ → 𝐺1, which maps strings of arbitrary length into elements of 𝐺1.

Additionally, we use ∆𝑖,𝑆(𝑥) = ∏
𝑥−𝑗

𝑖−𝑗𝑗∈𝑆,𝑗≠𝑖 to represent the Lagrange coefficient, where S

denotes a set of elements belonging to 𝑍𝑝
∗, and 𝑖, 𝑗 ∈ 𝑍𝑝

∗. This allows us to obtain a set of public

parameters 𝑃𝑃 = (𝐺1, 𝐺𝑇 , 𝑔, 𝑒, 𝐻1, 𝐻2). Subsequently, the data owner randomly selects two elements

α and β from 𝑍𝑝
∗ to construct two key pairs 𝑠𝑘1 and 𝑠𝑘2 . Ultimately, we can obtain the public

parameters PP as well as the two key pairs 𝑠𝑘1 and 𝑠𝑘2, as shown below:

{

𝑃𝐾 = (𝐺1, 𝐺𝑇 , 𝑔, 𝑒, 𝐻1, 𝐻2)

𝑠𝑘1 = (𝛽,
1

𝛽
, 𝑔𝛼)

𝑠𝑘2 = (𝑒(𝑔, 𝑔)𝛼, ℎ = 𝑔𝛽)

 (2)

Here, 𝑠𝑘1 is used to generate privileges for data users, while 𝑠𝑘2 is used to construct a secure

index list.

3.2. Keyword Index Encryption Algorithm

Constructing a secure index structure is critical to ensuring keyword information is not leaked.

Keyword encryption is an effective way to achieve this goal. In a searchable encryption protocol,

keyword encryption must meet two requirements: The confidentiality of keyword information must

be ensured. The ciphertext structure of the keyword must be capable of effective matching detection

with the trapdoor sent by the data user [6].

To satisfy these requirements, our protocol divides keyword encryption into the following two

steps:

Step 1: Basic Encryption of Keyword w

For the keyword w, the data owner first invokes the hash function 𝐻1, mapping it to an element in

𝑍𝑝
∗, denoted as 𝐻1(𝑤). Then, it calculates 𝑔𝐻1(𝑤), obtaining an element in 𝐺1. Using the bilinear map

e and the key 𝛾 = {𝑟1, 𝑟2}, the owner encodes 𝑔𝐻1(𝑤). The ciphertext of the keyword w is then

obtained as follows:

𝜀𝑟(𝑤) = 𝑒(𝑔𝐻1(𝑤)𝑟1 , 𝑔)
𝑟2
= 𝑒(𝑔, 𝑔)𝐻1(𝑤)𝑟1𝑟2 , 𝑙 = 𝑔𝑟2 (3)

Here, 𝛾 can be regarded as the key used to encrypt the keyword w.

Step 2: Adding an Access Control Tree to the Ciphertext Structure of Keyword w.

The data owner defines an access control tree 𝑇𝑤 for each keyword w, representing its access

policy. For each node x in 𝑇𝑤, from the root to the leaf nodes, the owner selects a polynomial 𝑞𝑥,

with the degree 𝑑𝑥 being one less than the threshold 𝑘𝑥 of the node x, i.e., 𝑑𝑥 = 𝑘𝑥 − 1.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

114

3.3. Key Generation Algorithm

In the attribute-based encryption searchable encryption protocol proposed in this paper, the process

by which a data user requests query permissions reflects fine-grained access control. To achieve this,

the data owner defines an attribute set for the data user based on their role and needs within the system,

and then generates the corresponding key. The detailed steps are as follows:

(1) Definition of Attribute Set: The data owner first defines an attribute set S for the data user

based on their real-life identity and the type of data they need access to. This attribute set S contains

the names of attributes related to the user’s permissions. These attributes are assigned according to

predefined system standards to ensure compliance with attribute names and values.

(2) Assignment of Attribute Values: For each attribute in the set S, the data owner assigns a

corresponding attribute value based on the specific circumstances of the data user. These values are

selected within the system-defined range, ensuring their validity and compliance.

(3) Generation of Attribute-Based Private Key: Using the data user’s attribute set S and the

corresponding attribute values, the data owner generates the data user’s attribute-based private key

with the master private key and the system’s public key. This private key is a necessary condition for

the data user to decrypt the encrypted data that meets the access control policy of their attribute set.

(4) Access Control Tree: During the keyword encryption phase, the data owner defines an access

control tree for each keyword. This tree describes which users, based on their attribute sets, can access

the encrypted data associated with that keyword. The data user can only query the keyword if their

attribute set satisfies the access control tree’s requirements.

(5) Permission Request and Verification: When a data user wants to query the data file associated

with a particular keyword, they need to send a request to the data owner. This request includes the

data user’s attribute set and the keyword they want to query. The data owner will verify whether the

user’s attribute set satisfies the access control tree’s requirements. If it does, the data owner grants

the data user permission to query the keyword and sends the corresponding trapdoor information.

(6) Trapdoor Generation and Query: Once the data user has been granted query permission, they

can use their attribute-based private key and the query keyword to generate a trapdoor. The data user

then sends this trapdoor to the cloud server for query. The cloud server uses the trapdoor and

encrypted index for matching. If the match is successful, it returns a list of data files containing the

keyword.

Through this process, the proposed protocol achieves fine-grained access control, ensuring that

only users who meet specific access policies can access the relevant encrypted data files. This greatly

enhances the security and control of data in cloud storage environments.

After the data owner defines the attribute set for the data user, they generate the corresponding key

SK based on the attribute set as follows:

𝑆𝐾 = (𝐷 = 𝑔
𝛼+𝑟

𝛽 , ∀𝑎 ∈ 𝑆,𝐷𝑎 = 𝑔𝑟 ∙ 𝐻2(𝑎)
𝑟𝑎 , 𝐷𝑎

′
= 𝑔𝑟𝑎) (4)

Where r and 𝑟𝑎 are randomly chosen elements from the non-zero integers in the p-order group,

and each attribute a in S has a corresponding 𝑟𝑎.

Finally, the data encryption key k, keyword encryption key 𝛾 , attribute set S, and the

corresponding attribute set key SK form a tuple (𝑘, 𝛾, 𝑆, 𝑆𝐾), which is sent to the data user.

3.4. Trapdoor Generation Algorithm

When a data user wishes to join the system and obtain query permission, they send a permission

request to the data owner. To ensure data security and fine-grained access control, the data owner

defines an attribute set for the user based on their identity and needs, and generates the corresponding

attribute-based private key. This private key serves as the data user’s credential for accessing

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

115

encrypted data. In the protocol proposed in this paper, whether the data user can access data files

related to a specific keyword depends on whether their attribute set meets the access control tree

requirements embedded in the keyword encryption structure. Only when the attribute set satisfies the

access control tree can the data user obtain permission to query the keyword. This mechanism ensures

that only users who meet specific conditions can access sensitive data, thereby achieving fine-grained

access control and data protection.

To generate a query trapdoor that meets the aforementioned conditions, the protocol generates a

keyword w trapdoor for the authorized data user as follows. The data user first calls the hash function

𝐻1 to map the keyword w to an element in 𝑍𝑝
∗, obtaining 𝐻1(𝑤). Then, the data user randomly selects

a number 𝜆 ∈ 𝑍𝑝
∗ and calculates 𝑔𝐻1(𝑤) and 𝑔𝜆 . Next, the data user further encrypts the query

keyword using the key 𝛾 obtained from the data owner for encrypting the keyword in the index list.

Additionally, to verify on the server side whether the data user has access to the query keyword, the

private key SK, representing their permission, is added to the trapdoor. The final trapdoor is as follows:

𝑇𝑟(𝑤) = (𝑇1 = 𝑔𝐻1(𝑤)𝑟1 ∙ 𝑔𝜆, 𝑇2 = 𝑔𝜆∙𝑟2 , 𝑆𝐾) (5)

Where 𝑇1 represents the encrypted form of the keyword w, and the introduction of 𝜆 ensures the

unlinkability of the keyword query trapdoor.

3.5. Query Algorithm

After the data user submits the query trapdoor to the server, the cloud server executes the query

algorithm to retrieve data files related to the specific keyword [7]. According to the proposed protocol,

the query algorithm involves two core steps aimed at ensuring data confidentiality and fine-grained

access control.

First, the server verifies whether the encrypted keyword ciphertext in the query trapdoor matches

the stored keyword ciphertext in the secure index list. This step ensures that only trapdoors matching

the keywords in the index list are processed, preventing interference from illegal or invalid queries.

Second, the server evaluates the permissions of the data user who submitted the query trapdoor.

This involves matching the attribute set embedded in the trapdoor with the access control tree within

the keyword encryption structure in the secure index list. Only if the data user’s attribute set satisfies

the requirements of the access control tree are they authorized to access the data files associated with

the keyword.

Only when both of these conditions are met can the data user obtain the encrypted data files related

to the query keyword. Throughout the query process, the algorithm ensures that plaintext information

of the data files, keyword plaintexts in the index list, and keyword plaintexts in the query trapdoor

are not exposed, thus guaranteeing the system’s security. This mechanism provides effective data

protection for data owners while allowing authorized data users to efficiently search for and access

the data they need.

In the algorithm description, w and 𝑤0 represent the query keyword submitted by the data user

and the keyword in the index list, respectively. Correspondingly, 𝑇𝑟(𝑤) represents the query

trapdoor for the keyword w, 𝑇𝑤0 represents the access policy for the keyword 𝑤0 , and 𝐶𝑇𝑤0

represents the ciphertext structure of the keyword 𝑤0 that includes the access policy 𝑇𝑤0. For each

leaf node x of 𝑇𝑤0, the following formula for 𝐹𝑥 is obtained:

𝐹𝑥 = 𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0) (6)

Since the root node is also a special non-leaf node, by calculating 𝐹𝑥 for non-leaf nodes in the

above manner, the root node R can ultimately be calculated as 𝐹𝑅 , with 𝐹𝑅 having two possible

values as shown:

𝐹𝑅 = {
⊥

𝑒(𝑔, 𝑔)𝑟∙𝑞𝑅(0) = 𝑒(𝑔, 𝑔)𝑟𝑠
 (7)

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

116

If 𝐹𝑅 =⊥ , it indicates that the user does not have the permission to query the keyword 𝑤0 .

Conversely, if 𝐹𝑅 ≠⊥, it means the user has permission to query the keyword 𝑤0, and the server will

further check if 𝑤0 = 𝑤.

After confirming the permission, the server further determines whether the query keyword w

matches the keyword w₀ in the index list. During this process, the cloud server must ensure that no

plaintext information related to w and 𝑤0 is obtained. This protocol verifies whether 𝑤0 = 𝑤 by

checking if the following equation (8) holds:
𝐶

𝑒(𝐶′,𝐷)/𝐹𝑅
∙ 𝑒(𝑇2, 𝑔) = 𝑒(𝑇1, 𝑙) (8)

If the equation holds, it confirms that 𝑤0 = 𝑤. At this point, 𝐶𝑇𝑤0 and 𝑇𝑟(𝑤) are considered a

match.

Once it is confirmed that 𝐶𝑇𝑤0 and 𝑇𝑟(𝑤) are a match, the cloud server returns all encrypted

data files related to the encryption structure 𝐶𝑇𝑤0 of the keyword 𝑤0 based on the index list. After

receiving the encrypted data files, the data user decrypts them using the data file key k obtained from

the data owner, ultimately retrieving the plaintext of the required data files.

4. Data Transmission Protocol Analysis

4.1. Correctness Analysis

The correctness of the query algorithm directly determines the correctness of this protocol. Therefore,

we will demonstrate the correctness of the protocol by proving the correctness of the query algorithm.

The key to proving the correctness of the query algorithm lies in proving that the establishment of

equation (8) is a sufficient condition for 𝑤0 = 𝑤. Next, I will provide a specific proof through the

following derivation. First, we analyze the left side of equation (8):
𝐶

𝑒(𝐶′,𝐷)/𝐹𝑅
∙ 𝑒(𝑇2, 𝑔) =

𝜀𝛾(𝑤0)∙𝑒(𝑔,𝑔)
𝛼𝑠

𝑒(ℎ
𝑠,𝑔

𝛼+𝑟
𝛽)/𝑒(𝑔,𝑔)𝑟𝑠

∙ 𝑒(𝑔𝜆𝑟2 , 𝑔) = 𝑒(𝑔𝐻1(𝑤0)𝑟1+𝜆 , 𝑔𝑟2) (9)

When 𝑤0 = 𝑤, we can substitute 𝑤0 with w in the equation for further analysis. The specific

process is as follows:
𝐶

𝑒(𝐶′,𝐷)/𝐹𝑅
∙ 𝑒(𝑇2, 𝑔) = 𝑒(𝑔𝐻1(𝑤0)𝑟1+𝜆 , 𝑔𝑟2) = 𝑒(𝑔𝐻1(𝑤0)𝑟1 , 𝑔𝜆, 𝑔𝑟2) = 𝑒(𝑇1, 𝑙) (10)

Through the derivation in equations (9) and (10), it can be proven that when
𝐶

𝑒(𝐶 ′,𝐷)/𝐹𝑅
∙ 𝑒(𝑇2, 𝑔) =

𝑒(𝑇1 , 𝑙), 𝑤0 = 𝑤 holds, thus proving the correctness of this protocol.

4.2. Security Analysis

Discrete Logarithm (DL) Assumption: Let G be a group with generator g and order q, where q is a

large prime number. We randomly and uniformly select an element 𝑎 ∈ 𝑍𝑝
∗ from the nonzero

subgroup of integers modulo p. The DL assumption is defined as follows: within polynomial time,

no adversary can compute a with non-negligible advantage ϵ given 𝑔𝑎 and g [8]. If the DL

assumption holds, the proposed protocol can achieve semantic security for query keywords under an

adaptively chosen plaintext attack.

We will prove this through a “chosen plaintext keyword game” between an adversary A and

challenger C.

Setup: The public parameters of the system are established as (𝐺1, 𝐺𝑇 , 𝑔, 𝑒, 𝐻1, 𝐻2).
Phase 1: The polynomial-time adversary A requests query traps for keywords 𝑞1, 𝑞2, . . . , 𝑞𝑛 based

on the attribute set 𝑆𝐴. In response, C returns the query trap for keyword 𝑞𝑖(1 ≤ 𝑖 ≤ 𝑛) as follows:

𝑇𝑟𝐴(𝑤𝑖) = (𝑇1 = 𝑔𝐻1(𝑤0)𝑟1 ∙ 𝑔𝜆, 𝑇2 = 𝑔𝜆∙𝑟2 , 𝑆𝐾𝐴), (1 ≤ 𝑖 ≤ 𝑛) (11)

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

117

where 𝑆𝐾𝐴 is the data key corresponding to the attribute set 𝑆𝐴.

Challenge: A randomly selects two keywords 𝑤0 and 𝑤1 , and sends them to C. C randomly

chooses a bit 𝑏 ∈ {0,1}, generates the query trap for 𝑤𝑏 , and returns 𝑇𝑟𝐴
#(𝑤𝑏) to A, where the

specific form of 𝑇𝑟𝐴
#(𝑤𝑏) is as follows:

𝑇𝑟𝐴
#(𝑤𝑏) = (𝑇1

= 𝑔𝐻1(𝑤0)𝑟1 ∙ 𝑔𝜆 , 𝑇2
= 𝑔𝜆∙𝑟2 , 𝑆𝐾𝐴) (12)

Phase 2: A requests query traps for other keywords 𝑞𝑛+1, 𝑞𝑛+2. . .. except for 𝑤0 and 𝑤1.

A guesses the value of b based on the information obtained from C, with the guessed value denoted

as b’. According to the previous rules, A cannot access the decryption oracle and thus cannot match

the obtained query traps for 𝑤0 and 𝑤1 with the keyword decryption structure to determine b. As a

result, A can only attempt to recover the value of 𝑤𝑏 from 𝑇𝑟𝐴
#(𝑤𝑏). However, under the DL

assumption, the polynomial-time adversary A cannot compute 𝐻1(𝑤𝑏)𝑟1 + 𝜆 with non-negligible

advantage ε, meaning that A cannot compute 𝐻1(𝑤𝑏), 𝑟1, or 𝜆 in polynomial time. Therefore, A

cannot guess b with non-negligible advantage within polynomial time. In other words, when the DL

assumption holds, the probability that A guesses correctly b = b’ is
1

2
+ 𝜀, where 𝜀 is negligible.

4.3. Complexity Analysis

The computation time and output space complexity of the proposed algorithm are analyzed, as shown

in Table 1:

Table 1: Complexity of Each Algorithm

Initialization Algorithm

Computational Time Cost 2𝑇𝑍𝑝∗ + 2𝑇𝐺1

^ + 𝑇𝑍𝑝∗
−1 + 𝑇𝐺𝑇

^

Asymptotic Time 𝑂(1)

Output Space Size 2‖𝑍𝑝
∗‖ + 3‖𝐺1‖ + ‖𝐺𝑇‖

Keyword Index Encryption Algorithm

Computational Time Cost 𝑇𝐻1
+ (2|𝑋| + 4)𝑇𝐺1

^ + 𝑇𝑝 + 𝑇𝐺𝑇
× + 𝑇𝐺𝑇

^ + |𝑋|𝑇𝐻2
+ 3𝑇𝑍𝑝∗

Asymptotic Time 𝑂(|𝑋|)
Output Space Size (2|𝑋| + 2)‖𝐺1‖ + ‖𝐺𝑇‖

Key Generation Algorithm

Computational Time Cost (2|𝑆| + 4)𝑇𝐺1

^ + (|𝑆| + 1)𝑇𝐺1

× + (|𝑆| + 1)𝑇𝑍𝑝∗ + |𝑆|𝑇𝐻2

Asymptotic Time 𝑂(|𝑆|)
Output Space Size (2|𝑆| + 1)‖𝐺1‖

Trapdoor Generation Algorithm

Computational Time Cost 𝑇𝐻1
+ 4𝑇𝐺1

^ + 𝑇𝐺1

×

Asymptotic Time 𝑂(1)
Output Space Size (2|𝑆| + 3)‖𝐺1‖

Query Algorithm

Computational Time Cost (2|𝑁| + 3)𝑇𝑝 + (|𝑁| + 2)𝑇𝐺𝑇
−1 + (|𝑁| + 3)𝑇𝐺𝑇

× + |𝑁|𝑇𝐺𝑇
^

Asymptotic Time 𝑂(|𝑁|)
Output Space Size 1

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

118

4.4. Experimental Results Analysis

Figure 3: Query Time for Different Numbers of Indexed Keywords and User Attributes

Figure 4: Query Time for Different Numbers of Files and User Attributes

After an in-depth analysis of the data presented in Figures 3 and 4, we can clearly observe that the

trend of query time for the searchable encryption protocol under multiple authorization centers is

similar to that under a single authorization center. Specifically, as the number of attributes held by

the data user executing the query increases, the query time for keywords also shows a growing trend.

Further analysis reveals a clear linear relationship between query time and the number of keywords

in the index list, meaning that as the number of keywords increases, the time required for the query

also increases correspondingly. However, it is noteworthy that, compared to the total number of data

files, query time does not exhibit significant correlation, indicating that the number of files does not

have a substantial impact on query efficiency.

Additionally, we particularly focused on the impact of the number of authorization centers on

keyword query time within the multi-authorization center architecture. The experimental results

clearly indicate that regardless of how the number of authorization centers varies, there is no

significant fluctuation in query time for keywords. This finding further validates the advantage of the

multi-authorization center architecture in maintaining stable query efficiency.

5. Conclusion

This paper addresses the limitations of existing algorithms in the context of smart home scenarios by

designing a searchable encryption protocol based on attribute-based encryption. Firstly, the security

model of the protocol is clearly defined, and a formal definition is provided, laying a solid theoretical

foundation for the protocol’s security. Subsequently, the paper elaborates on various key components

of the protocol, including the initialization algorithm, keyword encryption algorithm, key generation

algorithm, trapdoor generation algorithm, and query algorithm, ensuring that readers can fully

understand the operational mechanism of the protocol.

In the theoretical analysis section, the proposed algorithm is comprehensively evaluated in terms

of correctness, security, and complexity. Firstly, correctness analysis validates the protocol’s

accuracy in achieving the expected functions. Secondly, security analysis ensures that the protocol

can effectively resist various attacks, thereby protecting the confidentiality and integrity of the data.

Complexity analysis assesses the protocol’s performance in practical applications. Finally, the

applicability and advantages of the protocol in real-world applications are analyzed in conjunction

with the smart home context.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

119

References

[1] Kapadia, A., Tsang, P. P., & Smith, S. W. (2007). Attribute-based publishing with hidden credentials and hidden

policies. In Proceedings of the NDSS (pp. 179–192).
[2] Nishide, T., Yoneyama, K., & Ohta, K. (2008). Attribute-based encryption with partially hidden encryptor-specified

access structures. In Applied Cryptography and Network Security: Lecture Notes in Computer Science (pp. 111–

129).

[3] Camenisch, J., Kohlweiss, M., Rial, A., et al. (2009). Blind and anonymous identity-based encryption and authorized

private searches on public-key encrypted data. In Public Key Cryptography (pp. 196–214).

[4] Jung, T., Li, X., Wan, Z., et al. (2013). Privacy-preserving cloud data access with multi-authorities. In Proceedings

of the IEEE INFOCOM 2013 (pp. 2625–2633). IEEE.

[5] Cao, N., Wang, C., Li, M., et al. (2014). Privacy-preserving multi-keyword ranked search over encrypted cloud data.

IEEE Transactions on Parallel and Distributed Systems, 25(1), 222–233.

[6] Stefanov, E., Papamanthou, C., & Shi, E. (2014). Practical dynamic searchable encryption with small leakage. In

21st Annual Network and Distributed System Security Symposium. The Internet Society (pp. 1–15).

[7] Bost, R., Minaud, B., & Ohrimenko, O. (2017). Forward and backward private searchable encryption from

constrained cryptographic primitives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (pp. 1465–1482). ACM.

[8] Kim, K. S., Kim, M., Lee, D., et al. (2017). Forward secure dynamic searchable symmetric encryption with efficient

updates. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp.

1449–1463). ACM.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/20251753

120

