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Abstract. Transforming low-resolution (LR) images into their high-resolution (HR) counterparts 

is a challenging endeavor, referred to as image super-resolution (SR). The emphasis of this 

research is on the Super-Resolution Generative Adversarial Network (SRGAN), a sophisticated 

deep learning approach that can generate aesthetically pleasing high-resolution images. Initially, 

a backbone model is trained with mean squared error (MSE) loss function to enhance image 

details. Then, the author took this pretrained the backbone and used it to initialize the generator 

part of SRGAN, after which the author performed adversarial training where various content 

accuracy - visual realism tradeoffs were considered during optimization process. This work 

tested models on standard benchmarks like Set5, Set14, and BSD100 with Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index (SSIM). The best results were achieved when 

using intermediate learning rates combined with 16 batch size – those settings resulted in highest 

PSNR and SSIM values across all datasets that have been tested. To sum up, SRGAN has proven 

itself effective at solving problems related to image super resolution but there is still room left 

for improvement by adjusting hyperparameters or modifying architecture design based on 

findings from this paper. 
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1.  Introduction 

Super-resolution (SR) denotes the complex process of inferring a high-resolution (HR) image from its 

corresponding low-resolution (LR) version [1,2]. This technique holds significant value across a 

spectrum of practical uses, such as medical diagnostics, aerial photography from satellites, security 

monitoring, and everyday gadgets. The enhanced detail in high-resolution images is crucial for precise 

examination and informed decision-making within these industries. 

Recent years have seen significant advancements in image super-resolution, largely attributed to the 

power of deep learning [3]. Nonetheless, traditional interpolation techniques often fail to keep high 

frequency details resulting in blurry images or images with no clarity, and this is a big blow in the image 

super-resolution field. Moreover, Approaches grounded in deep learning are capable of generating 

superb, high-fidelity, high-resolution images by mastering the intricate mapping functions between LR 

and HR imagery. 

Super-Resolution Generative Adversarial Network (SRGAN) has become a groundbreaking method 

among these deep learning approaches. SRGAN is based on generative adversarial networks (GANs) to 

generate highly realistic HR images [4]. This framework is composed of two principal elements: the 

generator network, responsible for upgrading the resolution of images from low to high, and the 
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discriminator network, tasked with identifying authentic high-resolution images against those 

synthesized by the generator. Via this competitive training process, the generator is trained to craft high-

resolution images that are both realistic and rich in detail. 

There has been rapid progress in deep learning-based SR. SR techniques have been proposed and 

models have been developed to improve quality and efficiency. For example, the SRResNet model 

improves image details by adding residual blocks, while SRGAN extends that by combining it with 

adversarial training to further boost visual quality [5]. However, there is a need for better optimization 

of hyperparameters to balance image quality against speed of training. Additionally, exploring the 

impact of different network structures on SRGAN's performance can lead to further improvements in 

the model's effectiveness [6]. 

The paper focuses on the performance of the SRGAN network under various hyperparameter settings 

and different structures. This work utilizes well-known datasets such as Set5, Set14, and BSD100 for 

testing, and the COCO2014 dataset for training. This work systematically varies the learning rate and 

batch size for determining their influence on Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM). Experiments show that an intermediate learning rate together with a batch size 

of 16 are most effective in terms of achieving the highest PSNR and SSIM values respectively. 

Furthermore, the author considers how these hyperparameters might be used to achieve faster training 

or better performance in future research. 

2.  Method 

2.1.  Dataset and preprocessing 

To train SRGAN model, several datasets are leveraged. COCO2014 was used as the training dataset [7]. 

Set5, Set14 and BSD100 were used for testing. The reason why this work chose COCO2014 is that it 

covers a wide range of real-life images with different scenes and objects which helps in improving the 

generalization ability of the model. At the same time, Set5, Set14 and BSD100 are well-known 

benchmarks in image super-resolution research that allow people to evaluate models against them fairly 

[8,9]. 

To form the training pairs for the model, the author downsampled all HR images into LR images. 

Then all of them were normalized within the range [-1, 1] for normalization. Moreover, the author 

performed a few augmentation techniques on the training data to increase diversity and prevent 

overfitting such as random cropping or horizontal flipping. 

2.2.  Model 

The SRGAN model training process involves two primary steps. First, this work trains the SRResNet 

model, which serves as the backbone for the SRGAN generator. Using a mean squared error (MSE) loss 

function, the author trains SRResNet to generate HR images from low-resolution (LR) inputs. Once 

SRResNet is trained, it is used to initialize the generator network of the SRGAN model. In the second 

stage, the author proceeds with training the SRGAN model through adversarial training. This includes 

further refining the HR images generated by the pre-trained SRResNet generator using the MSE loss 

function. Concurrently, the discriminator is trained with a binary cross-entropy loss function to 

differentiate between real HR images and those generated by SRGAN. Finally, by combining the content 

loss from the generator and the adversarial loss from the discriminator, the SRGAN model is optimized 

to produce HR images that are both accurate and visually convincing. 

2.3.  Evaluation metrics 

In this study, the performance of the SRGAN model was thoroughly assessed using the following 

evaluation criteria: PSNR, which quantifies the discrepancy between the synthesized and actual images, 

with higher scores signifying superior image clarity. SSIM, which evaluates the structural congruence 

between the rendered and genuine images, with elevated scores denoting greater retention of structural 

integrity [10]. 
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3.  Results 

3.1.  Training details 

To ensure reproducibility and accuracy, the author conducted experiments using a set of well-defined 

hyperparameters in a controlled software environment. For SRResNet and SRGAN models, the initial 

learning rate was 10-4, which was determined to be a suitable value for convergence speed and stability 

after some trial runs. The batch size of 16 was chosen as it strikes a good balance between model 

performance and training speed when evaluated with PSNR and SSIM metrics. The SRResNet model 

was learned for 30 epochs. The SRGAN model was trained for an additional 50 epochs. These epoch 

numbers were determined based on early stopping criteria observed in preliminary trials, where the 

model’s performance plateaued.  

To sum up, the default setup is as following. The default setup for SRResNet includes: epochs 30, 

batch size 16, learning rate 10-4.  The default setup for SRGAN includes: epochs 50, batch size 16, 

learning rate 10-4. 

The loss functions employed during training were carefully selected to suit each phase of the model’s 

development. For the SRResNet training, the author used the MSE loss function to minimize the pixel-

level differences between the generated HR images and ground truths. When transitioning to the 

SRGAN model, the training process incorporated both content preservation and image quality 

enhancement. This was achieved by alternating between minimizing the MSE loss for content 

preservation and optimizing the adversarial loss for realism. Thus, it was ensured that the generated 

images closely mirrored the essence of the original images while also presenting a visually persuasive 

appearance. 

Experiments were done using Python due to its rich library supportiveness combined with deep 

learning frameworks compatibility. PyTorch was chosen as the deep-learning framework because it is 

flexible when implementing and training the SRGAN model. The GPU is the NVIDIA A100, which has 

enough computational power required for massive data handling capacity coupled with complex 

computation needs during the training phase. The use of the A100 GPU significantly reduced training 

time, enabling extensive experimentation with various hyperparameters and model architectures. This 

setup was chosen to create a strong basis for the model development under test conditions which may 

be repeated in future iterations. 

3.2.  Quantitative performance 

3.2.1.  Impact of training epochs in SRResNet. As demonstrated in Table 1, upon elevating the training 

period to 60 epochs, no significant enhancement in the model's performance is observed beyond the 

results achieved with 30 epochs of training. Conversely, training for only 15 epochs results in a less 

effective model than training for 30 epochs. This suggests that the model may have overfitted during 

training beyond 30 epochs. 

Table 1. Performance of different epochs using SRResNet, with learning rate 1e-4 and batch size 16. 

Epoch Dataset PSNR SSIM 

15 

Set5 25.079 0.768 

Set14 25.307 0.709 

BSD100 24.707 0.651 

30 

Set5 28.294 0.829 

Set14 25.941 0.714 

BSD100 25.048 0.661 

60 

Set5 23.350 0.791 

Set14 25.941 0.714 

BSD100 25.048 0.661 
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3.2.2.  Impact of learning rate in SRResNet. As demonstrated in Table 2, the model performs the best 

when the learning rate is 1e-4.  

Table 2. Performance of different learning rate using SRResNet, with epoch 30 and batch size 16. 

Learning rate Dataset PSNR SSIM 

1e-5 

Set5 27.846 0.833 

Set14 25.955 0.726 

BSD100 24.512 0.629 

1e-4 

Set5 28.294 0.829 

Set14 25.941 0.714 

BSD100 25.048 0.661 

1e-3 

Set5 20.265 0.743 

Set14 24.723 0.727 

BSD100 24.803 0.685 

3.2.3.  Impact of batch size in SRResNet. As displayed in Table 3, the model achieves the best results 

with a batch size of 16. From this, it can be concluded that a batch size that is too large may speed up 

the training process but does not lead to the optimal solution. Conversely, a batch size that is too small 

can negatively impact the training of the model and may lead to overfitting.  

Table 3. Performance of different batch size using SRResNet, with learning rate 1e-4 and epoch 30. 

Batch size Dataset PSNR SSIM 

8 

Set5 25.079 0.851 

Set14 25.307 0.722 

BSD100 24.707 0.665 

16 

Set5 28.294 0.829 

Set14 25.941 0.714 

BSD100 25.048 0.661 

32 

Set5 27.643 0.828 

Set14 24.442 0.675 

BSD100 23.831 0.620 

3.2.4.  Impact of training epochs in SRGAN. Performance in Table 4 demonstrates that the SRGAN 

achieves the best performance at 50 epochs. When the number of epochs is increased to 100, both PSNR 

and SSIM metrics across all datasets (Set5, Set14, BSD100) declines. Similarly, reducing the number 

of epochs to 25 also results in lower performance metrics compared to 50 epochs. This suggests that 

learning the SRGAN model for 50 epochs provides an optimal balance between training duration and 

model performance. Excessive training epochs could result in overfitting, a scenario where the model 

excels on the training set but falters on the test set. However, an insufficient number of training epochs 

might deprive the model of the adequate exposure needed to learn and internalize critical patterns. 

Table 4. Performance of different epochs using SRGAN, with learning rate 1e-4 and batch size 16. 

Epoch Dataset PSNR SSIM 

25 

Set5 27.774 0.822 

Set14 24.122 0.660 

BSD100 23.360 0.600 
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Table 4. (continued) 

50 

Set5 28.294 0.829 

Set14 25.941 0.714 

BSD100 25.048 0.661 

100 

Set5 27.366 0.795 

Set14 25.806 0.699 

BSD100 24.816 0.634 

3.2.5.  Impact of learning rate in SRGAN. As shown in Table 5. Learning rate with 1e-5 performs the 

best in all explorations.  

Table 5. Performance of different learning rate using SRGAN, with epoch 50 and batch size 16. 

Learning rate Dataset PSNR SSIM 

1e-5 

Set5 29.770 0.860 

Set14 27.327 0.765 

BSD100 26.582 0.722 

1e-4 

Set5 28.294 0.829 

Set14 25.941 0.714 

BSD100 25.048 0.661 

1e-3 

Set5 27.763 0.836 

Set14 25.238 0.699 

BSD100 24.755 0.669 

3.2.6.  Impact of batch size in SRGAN. As shown in Table 6, an excessively small batch size may cause 

the model to converge prematurely at a local optimum, hindering it from attaining optimal performance. 

In contrast, an overly large batch size can lead to a plateau in performance gains, and in some cases, it 

might even result in a decline in the model's effectiveness. Experiments showed that a batch size of 16 

provided the best balance, yielding the highest PSNR and SSIM across the tesets. In future experiments, 

the author can try adjusting to a higher batch size to potentially improve the training speed of the model 

while ensuring it maintains high performance.  

Table 6. Performance of different batch size using SRGAN, with learning rate 1e-4 and epoch 50. 

Batch size Dataset PSNR SSIM 

8 

Set5 23.476 0.739 

Set14 24.935 0.688 

BSD100 24.110 0.614 

16 

Set5 28.294 0.829 

Set14 25.941 0.714 

BSD100 25.048 0.661 

32 

Set5 28.441 0.827 

Set14 25.604 0.693 

BSD100 24.415 0.632 
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Figure 1. Representative examples of low and high resolution images (Figure Credits: Original). 

3.3.  Visualization 

In this section, the author presents a visual comparison between LR and the HR images generated by 

pretrained SRGAN model, as demonstrated in Figure 1. The down-sampled LR images lose much of the 

detail and clarity that is present in the originals. These pictures are then upscaled by a factor of 4 using 

SRGAN, which brings back lots of the initial detail and improves their visual quality. 

4.  Conclusion 

This work investigated the use of the SRGAN model in this project for image super-resolution, 

concentrating on creating high-quality images from low-quality inputs. The author laid a strong basis 

for the SRGAN generator by training the SRResNet model first. Both the content fidelity and visual 

plausibility of produced pictures were improved during subsequent adversarial training. According to 

tests in this work, hyperparameters are changed including the number of training epochs, learning rate, 

and batch size systematically to find out their influence on the model performance measured by PSNR 

and SSIM metrics. It can be seen from the findings that SRGAN is good at balancing content fidelity 

and perceptual quality especially when it is trained with an optimal set of hyperparameters. The best 

results were observed with a learning rate of 1e-4, a batch size of 16, and 50 training epochs, which 

provided the highest PSNR and SSIM values across the datasets tested. Also, visual comparisons have 

shown that fine details can be recovered by SRGAN while producing more visually satisfying images 

than traditional interpolation methods do. However, there is still much to be desired. Future studies may 

concentrate on further adjustment of hyperparameters, exploring different network architectures as well 

as applying SRGAN onto wider range of diverse difficult datasets so that it could push beyond current 

limits in area of image super-resolution. In conclusion, this study explores the potency of SRGAN in 

addressing challenges associated with image super-resolution and establishes a solid groundwork for 

ongoing advancements in this domain. 
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