

An Adaptive Cruise Control Algorithm Based on DDPG

Algorithm Based on Deep Reinforcement Learning Under

Variable Acceleration Conditions

Yuhao Lan

College of Automotive Sciences, Tongji University, Shanghai, China

2153511@tongji.edu.cn

Abstract. Adaptive cruise control (ACC) dynamically regulates a vehicle's speed to preserve a

secure gap from the preceding vehicle, enhancing road safety. In this study, ACC is examined

through the lens of deep reinforcement learning, with a focus on the Deep Deterministic Policy

Gradient (DDPG) technique. The reward function takes into account the speed error, and two

modes—speed control and distance control—are implemented. The proposed ACC strategy is

trained and validated through simulations on the MATLAB/Simulink platform. The

experimental results indicate that the reward function converges rapidly, confirming the

suitability of the DDPG algorithm for automotive ACC research.

Keywords: Reinforcement Learning, DDPG, Adaptive Cruise, Intelligent Vehicle.

1. Introduction

Automobile adaptive cruise control (ACC), sometimes referred to as active cruise control, is a new

system that adds the control function of keeping reasonable distance with the vehicle in front on the

basis of the constant speed cruise system. Compared with cruise control, it does not require the driver

to frequently cancel and set the cruise control function, so as to avoid distracting the driver during

driving. In addition, adaptive cruise can automatically control the engine and brakes properly. In other

words, models equipped with fixed-speed cruise can only play a role when there is very little traffic and

the road conditions are very good, while the applicable scenarios of adaptive cruise are much wider.

Ideally, as long as you get on the high speed, you can directly turn on the adaptive cruise, so that it can

control its own deceleration and acceleration, and almost completely free the right foot. ACC further

considers safety and comfort, can alleviate driving fatigue, and has a broad space for development.

Fu et al. examined three critical factors—efficiency, accuracy, and passenger comfort—and utilized

the DDPG algorithm to address autonomous braking by closely analyzing both lane changes and braking

processes [1]. Zhang et al. introduced the use of the Catmull-Rom spline used for modeling lane

markings, which offers greater stability and simplicity in construction compared to cubic polynomials,

along with enhanced accuracy [2]. Liu et al. developed the AD-GNN framework for predicting adaptive

traffic flow using a neural network, which integrates gated time convolutional networks with diffusion

convolutional networks to simulate spatial-temporal relationships [3]. Zhang et al. also created an

adversarial pedestrian detection model, employing adversarial learning during training, which enhanced

detection accuracy by 18.45% and delivered real-time processing at 318 frames per second [4]. Jin et al.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

37

applied the 3D-EAFF model, along with trajectory deletion and update strategies, to enhance the

tracking accuracy of 3D multi-object tracking (MOT) [5]. Desjardins et al. used function approximation

and gradient descent algorithms to refine automatic vehicle control strategies, enhancing the

performance of cooperative adaptive cruise control (CACC) [6]. Finally, Chen et al. designed a path

planning strategy leveraging deep reinforcement learning to reduce vehicle fuel consumption while

meeting task deadlines [7]. This paper focuses on adaptive cruise control, employing the DDPG

algorithm from deep learning to implement speed and distance control modes by adjusting for speed and

distance errors.

2. Background Knowledge

Deep reinforcement learning (DRL) is an AI method that simulates human decision-making by

combining the perceptive abilities of deep learning with the decision-making mechanisms of

reinforcement learning. This approach allows control to be exercised directly based on visual inputs.

The remarkable achievements of deep reinforcement learning, particularly demonstrated by AlphaGo,

have drawn considerable attention from the global research community. Its effectiveness in making

decisions under complex conditions highlights its potential. The complexity of vehicle operation, which

requires analyzing large volumes of detected data and making real-time decisions, aligns well with the

strengths of deep reinforcement learning. Figure 1 illustrates the key components and processes involved

in reinforcement learning.

Figure 1. Component composition and process of reinforcement learning.

The agent engages with its environment by taking actions, which in turn cause the environment to

change and yield a reward. Through repeated interactions, the agent acquires knowledge through a

process of trial and error to develop an optimal strategy. This process, involving trial and error with

delayed feedback, is referred to as a Markov decision process. A Markov decision process is

characterized by a tuple < S, A, P, r >, where S represents the set of all potential states, A represents

the set of all potential actions, P represents the probability of state transition (i.e., the likelihood of

moving from state s to state s′ after taking action a), and r(s, a) is the reward function, which

specifies the reward earned from executing action a in state s. During each interaction cycle, the agent

traces an interaction trajectory, and the cumulative return at a given state is calculated as follows:
(s1, a1, r1, s2, a2, r2, ⋯ , sT−1, aT−1, rT−1, sT, ⋯)st

 Rt = γrt+1 + γ2rt+2 + γ3rt+3 + ⋯ = ∑ γk∞

k=0 rt+k+1 (1)

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

38

Whereγ ∈ [0,1] represents the discount factor, which determines how future rewards are valued

relative to immediate ones. A higher value of γ places more emphasis on long-term rewards, while a

lower value focuses more on short-term gains. The main goal of reinforcement learning is to optimize

the expected cumulative reward, expressed as:

 π(a|s) = argmax
a

E[R] (2)

To determine the optimal strategy, we can introduce the value function and the state-action value

function. The value function is defined as:

 Vπ(s) = Eπ [∑ γk∞

k=0 rt+k+1|st = s] = Eπ[rt+1 + γ V(st+1)|st = s] (3)

The state-action value function is defined as:

 Qπ(s, a) = Eπ [∑ γk∞

k=0 rt+k+1|st = s, at = a] (4)

Then the optimal state-behavior function corresponding to the optimal strategy is satisfied:

 q∗(s, a) = max
π

 qπ(s, a) (5)

3. ACC Based on DDPG Algorithm

The Deep Deterministic Policy Gradient (DDPG) algorithm is a deep reinforcement learning method

specifically created to address issues in continuous action spaces. It integrates deterministic strategies

with the concept of experience replay. DDPG operates on a framework based on the actor-critic model,

where the Actor is tasked with learning deterministic policies—outputting specific action values for a

given state. Meanwhile, the Critic’s role is to learn the value function and assess the current state. Unlike

traditional policy gradient methods, DDPG uses deterministic strategies that output exact action values

rather than probabilities, making it more effective in continuous action spaces. Before training begins,

the network architecture and parameters for both the Actor and Target-Actor, as well as the Critic and

Target-Critic, are identical. During training, the parameters of the Target-Actor and Target-Critic

networks are updated according to formula (5):

 {
θQ′ = τθQ + (1 − τ)θQ′

θπ′ = τθπ + (1 − τ)θπ′ (6)

Where θQ′
, θQ, θπ, θπ′ represent the parameters for the Target-Critic, Critic, Target-Actor, and

Actor networks, respectively. Additionally, τ ≪ 1 governs the rate of parameter updates. The

anticipated gradient of the action-value function aligns with the gradient of the deterministic policy

function:

 ▽θ J(μθ) = Eμθ
[▽θ μθ(s) ▽a Qμ(s, a)|a=μθ(s)] (7)

The spacing strategy employed in this paper utilizes the fixed time interval approach (CTH). In the

CTH method, the time gap between vehicles is kept constant, and the distance relative to the vehicle

ahead is directly related to its speed. For safety purposes, the strategy includes a minimum safe distance,

outlined in the following formula t
H

:

 Δxdes = thνH + x0 (8)

In this formula, Δxdes represents the desired relative distance between the vehicles, th is the time

gap, νH is the speed of the leading vehicle, and x0 is the minimum safe distance to follow. The

MATLAB/Simulink simulation flowchart for the algorithm utilized in this study is displayed in Figure

2.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

39

Figure 2. MATLAB/Simulink simulation flow chart.

4. Experimental Results

The hardware setup for the algorithm in this study includes an AMD R7 5800H processor with Radeon

Graphics, 16GB of DDR4 3200MHz RAM (8GB × 2), an M.2 2280 512GB SSD, and an NVIDIA

GEFORCE RTX 3050 GPU. The software environment is Windows 10 Home (Chinese 64-bit) running

Matlab R2022a with Simulink. Figure 3 displays the safety distance and relative distance curves, while

Figure 4 illustrates the displacement curve.

Figure 3. Safety distance and relative distance curve.

Figure 4. Displacement curve.

Front vehicle displacement

Rear vehicle displacement

Distance difference

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

40

As shown in the figure, the relative distance between the two vehicles exceeds the safe distance

during the first 23 seconds. After 23 seconds, the relative distance falls below the safe distance, but the

gap between the two vehicles stabilizes. Figure 5 presents the acceleration curve of the leading vehicle.

Figure 5. Acceleration curve of the front vehicle.

In this study, the initial acceleration of the leading vehicle is defined as 0.8sin (0.25ωt). The speed

curve is depicted in Figure 6.

Figure 6. Speed curve.

The figure shows that before 23 seconds, the relative distance surpasses the safe threshold, and the

system operates in speed control mode, maintaining the vehicle speed at around 30 m/s. After 23 seconds,

when the relative distance drops beneath the safety threshold, the system switches to distance control

mode, with v_ref=min {v_lead, v_set}. The acceleration curve for this vehicle is presented in Figure 7.

accelerated speed

Front vehicle speed

Rear vehicle speed

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

41

Figure 7. Acceleration curve of the vehicle.

The acceleration curve of the leading vehicle indicates that the acceleration varies over time during

both the speed control and spacing control modes. Figure 8 illustrates the reward value curve, which

shows rapid convergence. This demonstrates the effectiveness of using reinforcement learning to

implement adaptive cruise control (ACC) efficiently.

Figure 8. Reward value curve.

5. Conclusions

This paper focuses on adaptive cruise control (ACC) and implements it using the DDPG (Deep

Deterministic Policy Gradient) algorithm within deep learning. By incorporating functions for speed

error and distance error, two control modes—speed control and distance control—are established along

with a reward value function. The algorithm is tested and validated through simulations in

MATLAB/Simulink. The experimental results confirm that the DDPG algorithm successfully handles

both control modes using deep reinforcement learning. While this study considers a scenario involving

two vehicles, real-world traffic conditions often involve three or more vehicles. Future research will aim

accelerated speed

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

42

to enhance model performance by extending the approach to multi-vehicle scenarios using deep

reinforcement learning.

References

[1] Yuchuan Fu, Changle Li, Fei Richard Yu. A decision-making strategy for vehicle autonomous

braking in emergency via deep reinforcement learning[J]. IEEE Transactions on Vehicular

Technology, 2020, 69(6):5876-5888.

[2] Jindong Zhang, Haoting Zhong. Curve-based lane estimation model with lightweight attention

mechanism[J]. Signal, Image and Video Processing, 2023, 17(5):2637-2643.

[3] Tianbo Liu, Jindong Zhang. An adaptive traffic flow prediction model based on spatiotemporal

graph neural network[J]. The Journal of Supercomputing, 2023, 79(14):1-25.

[4] Jindong Zhang, Jian Dou. An adversarial pedestrian detection model based on virtual fisheye

image training[J]. Signal, Image and Video Processing, 2024, 18(4):3527-3535.

[5] Jingyi Jin, Jindong Zhang, Kunpeng Zhang, et al. 3D multi-object tracking with boosting data

association and improved trajectory management mechanism[J]. Signal Processing, 2024,

218(2024):109367

[6] Charles Desjardins, Brahim Chaib-draa. Cooperative adaptive cruise control: a reinforcement

learning approach[J]. IEEE Transactions on intelligent transportation systems, 2011, 12(4):

1248-1260.

[7] Li, Meng, Cao Zehong, Li Zhibin. A reinforcement learning-Based vehicle platoon control

strategy for reducing energy consumption in traffic oscillations[J]. IEEE Transactions on

Neural Networks & Learning Systems, 2021, 32(12):5309-5322.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241243

43

