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Abstract. This paper mainly explores the application of artificial intelligence (AI) technologies 

in knowledge graphs (KGs), focusing on how natural language processing (NLP), machine 

learning, and deep learning methods can achieve the automated construction of KGs. First, the 

paper introduces the basic concepts of KGs and the limitations of traditional construction 
methods. Then, it analyzes recent technological advancements in knowledge graph construction, 

data fusion, and reasoning, with particular emphasis on the application of graph convolutional 

neural networks (GCNs) in handling multi-relational data. Finally, the practical applications of 

KGs in business analytics, healthcare information systems, and recommendation systems are 

discussed, demonstrating their broad potential in data management and reasoning. 
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1.  Introduction 

With the advent of the era of big data, enterprises and research institutions are facing exponential growth 

in the amount of data. Efficiently managing and utilizing massive data has become a key issue driving 
technological progress and business innovation. KGs, a technology that enables the semantic integration 

and representation of knowledge, have gradually become an important research tool and a hotspot in 

business analytics. KGs were first proposed by Google in 2012 with the goal of improving the search 
engine's comprehension and response capabilities by constructing a graph of entities and their 

relationships. In the construction of KGs, traditional methods primarily rely on manual work, which not 

only requires a large amount of repetitive, non-meaningful labor but also struggles to quickly process 
vast amounts of data in today's big data environment. With the development of AI technologies, the 

integration of intelligent methods, such as NLP and machine learning, into the construction of KGs has 

become a growing trend. 

2.  Literature Review  
In recent years, research on KGs has mainly focused on the following areas: 

The first aspect is Knowledge Graph Construction. Researchers have used NLP, machine learning, 

and deep learning methods to automate knowledge extraction and relationship discovery. Overall, Ji et 
al.[1] collected and reviewed methods for representing and acquiring KGs, as well as their applications 

in various fields, discussing in-depth the techniques for constructing KGs and emphasizing the 

importance of automated and intelligent construction. In terms of specific methods, Miwa, M. et al.[2] 

adopted a joint extraction method using a bidirectional Long Short-Term Memory (LSTM) and tree-
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structured LSTM models to process text sequences and dependency tree structures for entity and 

relationship extraction. The experimental results showed that the joint extraction method significantly 

improved precision and recall compared to traditional cascade methods. Lin, Y. et al.[3] enhanced 

relationship extraction by using instance-level selective attention mechanisms and convolutional neural 
networks (CNNs), achieving more accurate relationship extraction from noisy data. 

The second aspect focuses on knowledge graph fusion. Overall, Shvaiko et al.[4] reviewed the 

current state and challenges in the field of ontology matching. They introduced various matching 
methods, providing a detailed analysis of the advantages and disadvantages of existing techniques, such 

as string matching, linguistic methods, structural matching, and semantic matching. They pointed out 

the need to improve the automation level of the matching process in the future, while allowing user 

intervention and adjustment to handle the heterogeneity between different ontologies. In terms of 
specific methods, Dong et al.[5] proposed a probabilistic knowledge fusion method aimed at large-scale 

web information integration. Through probabilistic models, they integrated information from multiple 

data sources to construct a large-scale knowledge graph. Machine learning and statistical methods were 
then used to fuse information from different sources, addressing issues such as data redundancy and 

conflicts, significantly improving the accuracy and coverage of the knowledge graph. The paper 

discussed integrating information from different data sources but may not delve deeply into handling 
noisy or low-quality data. 

The third aspect focuses on knowledge graph reasoning. In general, Wang et al.[6] reviewed 

knowledge graph embedding techniques and their applications. Knowledge graph embedding involves 

mapping entities and relationships from the knowledge graph into low-dimensional vector spaces for 
efficient processing in various machine learning tasks. They analyzed the application of knowledge 

graph embeddings in NLP, recommendation systems, and question-answering systems, highlighting the 

potential of graph neural networks in reasoning. In terms of specific methods, Michael Schlichtkrull et 
al.[7] proposed an extended Graph Convolutional Network (GCN) model called  R-GCN, designed to 

handle graph data with multiple types of relationships. R-GCN introduces relationship-specific 

convolution operations based on standard GCNs, enabling the independent modeling of different 

relationship types, capturing more fine-grained relational information. The study found that R-GCNs 
can effectively capture the interactions between different types of relationships, providing stronger 

representational and reasoning capabilities. 

The fourth aspect is the application of KGs. KGs have been applied in various specific fields. For 
example, in the field of weaponry and equipment, Yang Liping et al.[8] employed dictionary 

embeddings and integrated multiple deep learning models to improve the effectiveness of equipment 

entity recognition. Additionally, they designed a relationship extraction model based on RNPA (ResNet-
PCNN-ATT) to reduce noise errors caused by incorrect annotations during the extraction task. 

Visualization of the graph construction demonstrated good results; however, due to the limited 

availability of relevant datasets, the performance on large datasets remains unknown. In the healthcare 

sector, Zhao Dandan et al.[9] applied a hybrid neural network approach using pre-trained models to 
address unstructured medical texts with high entity density and lengthy sentence structures. By 

integrating entity marking features with global semantic features and using a classifier for extraction, 

they concluded that a multi-feature fusion approach can enhance entity-relation extraction. However, 
due to issues such as imbalanced data distribution and the similarity in semantics between Interaction 

and Effect types, the overall recall and precision of the model were not high. 

3.  Research on Knowledge Graph Technology Based on  
Currently, the research on introducing AI into KGs is flourishing, focusing primarily on enhancing the 

representational, reasoning, and updating capabilities of KGs. GCNs are one of the mainstream methods 

being researched, alongside other applications of deep neural networks and reinforcement learning. 
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3.1.  Knowledge Graph Technology Based on Graph Convolutional Networks 

GCNs are a deep learning model specifically designed to handle graph-structured data. By performing 

convolution operations on graph nodes, GCNs can effectively capture the relationships and features 

between nodes and their neighbors, demonstrating excellent performance when processing complex 
graph data. The application of GCNs in KGs primarily includes the following three aspects: 

3.1.1.  Representation of Entities and Relationships. GCNs apply convolution operations on graph 

structures, allowing them to capture local structural information of nodes and the complex interactions 
between nodes. GCNs can utilize the topological structure of the graph and the features of nodes to learn 

richer representations of entities and relationships. 

Thomas N. Kipf et al.[10] proposed the foundational model of GCNs, demonstrating how local graph 

structures can be utilized for semi-supervised learning, significantly improving the performance of node 
classification tasks. This laid the groundwork for the application of graph convolution techniques in 

KGs. GCNs have shown their efficiency and superiority in handling graph-structured data, particularly 

in the context of sparse data. Following this, Michael Schlichtkrull et al.[11] introduced the Relational 
Graph Convolutional Network (R-GCN), which is specifically designed to handle multi-relational data 

in KGs. By introducing relationship-specific convolution operations, R-GCN is capable of processing 

different types of relationships, thereby enhancing the representation of both entities and relationships. 
William L. Hamilton et al. [12] proposed an inductive learning method that enables efficient node 

representation learning on large-scale graph data. Through the sampling of neighboring nodes and the 

aggregation of their features, GraphSAGE can learn node embeddings without requiring full graph 

information, making it particularly useful for handling dynamic KGs. Xu et al.[13] also proposed the 
Relational Graph Attention Network (RGAT), which combines graph attention mechanisms with 

relational embeddings to learn the representation of nodes and edges in knowledge graphs. RGAT 

introduces attention weights for different types of relationships, enabling more precise modeling of 
complex relationships. RGAT has demonstrated its advantages in tasks such as entity linking and 

relationship prediction in KGs, especially in handling graph data with highly complex relationships. 

3.1.2.  Multi-hop Reasoning and Complex Queries. Reasoning tasks in KGs often involve multi-hop 

relationships, and traditional methods have performed poorly in handling multi-hop reasoning and 
complex queries, as they struggle to efficiently traverse multiple nodes for inference. Methods based on 

GCNs, however, gradually aggregate neighboring node information through multiple convolutional 

layers, effectively handling multi-hop reasoning tasks by capturing relationship chains that span multiple 
nodes, thereby enhancing reasoning capabilities. 

Michihiro Yasunaga et al.[14] proposed the QA-GNN (Question Answering with Graph Neural 

Networks) model, which combines pre-trained language models with graph neural networks to perform 
graph reasoning on KGs. By integrating the semantic understanding of the language model, the model 

generates accurate answers. Later, Sun et al.[15] proposed the GRAFT-Net (Graph Retrieval and Fusion 

Network) model, which integrates knowledge bases and textual data. GRAFT-Net excels in open-

domain question answering tasks, particularly when dealing with complex queries that involve 
incomplete knowledge bases and large-scale text data. Although graph neural networks perform well on 

graph-structured data, they are highly sensitive to small-scale adversarial perturbations, which 

necessitates further exploration of the robustness of graph learning models. Zang et al.[16] proposed a 
general adversarial attack method called "Anchor Nodes." Experiments showed that even a small 

number of adversarial nodes could significantly degrade the performance of graph learning models, 

demonstrating the effectiveness and broad applicability of these attack methods. 

3.1.3.  Knowledge Graph Completion and Link Prediction. Knowledge graphs often contain a large 

amount of missing information and unconnected nodes. Traditional methods for graph completion and 

link prediction are inefficient when dealing with large-scale data. GCNs, by aggregating local 

neighborhood information of nodes, can better predict missing links and, through multi-layer 
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convolution operations, process more extensive neighborhood information, thereby improving the 

accuracy of link prediction. 

Berg et al.[17] proposed the GC-MC (Graph Convolutional Matrix Completion) model, which 

applies graph convolutional networks to matrix completion tasks, specifically for link prediction in KGs. 
The model learns latent representations of entities by applying convolutional operations on the graph 

structure, allowing for the prediction of missing links. GC-MC performs excellently in knowledge graph 

completion and recommendation system tasks, demonstrating the powerful ability of GCNs to handle 
sparse matrices and link prediction tasks. Additionally, Wang et al.[18] proposed the NGCF (Neural 

Graph Collaborative Filtering) model, which utilizes graph neural networks to perform convolutional 

operations on user-item bipartite graphs to capture complex interactions between users and items. 

Although primarily applied to recommendation systems, the model’s method is also applicable to 
knowledge graph completion and link prediction tasks. Finally, from the systematic summary by Nickel, 

Maximilian et al.[19], which covers relational machine learning, including the application of GCNs in 

KGs, we can see that the introduction of AI methods has effectively solved problems in knowledge 
graph technology, such as reasoning path search, graph completion, entity linking, and relationship 

extraction. 

3.2.  Knowledge Graph Technology Based on Other Methods 
In addition to the currently mainstream GCNs, the introduction of other AI methods, such as deep neural 

networks (DNNs) and reinforcement learning (RL), has also driven the rapid development of knowledge 

graph technology. 

Deep neural networks, by increasing the number of hidden layers and using relational embedding 
models, can effectively predict and complete missing entity-relation pairs. For instance, Tim Dettmers 

et al.[20] proposed a relational embedding model based on CNNs, which uses convolutional operations 

to capture the complex relational structures between entities, thereby improving the model's expressive 
power. Similarly, Sun et al.[21] introduced the RotatE model, which represents relationships between 

entities in a complex vector space through rotational operations. This model excels in handling 

symmetric, inverse, and composite relationships and has shown outstanding performance in link 

prediction tasks within KGs. 
Inference or path search in KGs typically relies on predefined rules or statistical models, but these 

methods struggle to handle complex reasoning paths and long-distance relationships. Zhang et al.[22] 

proposed a reinforcement learning-based path search model that can find optimal paths within 
knowledge graphs to answer complex natural language questions. Additionally, Lin et al.[23] introduced 

a model that combines reinforcement learning's reward mechanisms for multi-hop reasoning, solving 

the issue of completing missing triples in KGs, reducing the exploration of redundant paths, and 
improving the precision and efficiency of knowledge graph completion. 

4.  Application Value and Advantages of Knowledge Graphs  

Knowledge graphs build complex semantic networks, transforming massive amounts of unstructured 

data into structured knowledge to solve real-world problems across different fields. 

4.1.  Knowledge Management Field 

The construction and maintenance of KGs depend on a large amount of structured data. However, in 

practical applications, data is often incomplete or sparse. For example, financial institutions frequently 
handle complex financial data and risk assessment relationships, involving a large amount of cross-

departmental and cross-domain data associations. The RotH (Rotation in Hyperbolic Space) model can 

help systems precisely model these complex relationships in high-dimensional spaces, thereby 
improving the ability for data analysis and risk assessment. Additionally, in supply chain management, 

businesses must deal with the complex relationships among suppliers, products, logistics, and customers, 

which involve a vast amount of sparse data and intricate relationship networks, such as product-delivery 

person and customer-address relationships. The SimplE (Simple Embedding) model, as a bilinear 
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factorization method, can handle multi-relational and sparse data in knowledge graphs. By using 

bidirectional embeddings to enhance the representation of relationships, SimplE simplifies the model 

structure and improves computational efficiency. 

4.2.  Recommendation System Domain 
In recommendation systems, KGs face challenges such as data updates and cold-start issues, making it 

difficult for the system to provide accurate recommendations when there is insufficient user interaction 

information. For example, Spotify’s music recommendation system and LinkedIn need to frequently 
update user preference data, analyze users' career histories, skill descriptions, and job requirements, and 

map them to standardized career and skill categories. In this context, William L. Hamilton et al.[24] 

proposed the GraphSAGE (Graph Sample and AggregatE) model. By sampling neighboring nodes and 

aggregating their features, the model dynamically updates node embeddings without needing access to 
full graph information, making it particularly suitable for handling large-scale dynamic graphs. 

4.3.  Search Engine Domain 

In the search engine domain, KGs face challenges such as keyword matching and inaccuracies in 
handling ambiguous and polysemous queries. To address the issue of capturing special relationships in 

search engines, the QA-GNN model can be introduced. This model, which combines pre-trained 

language models with graph neural networks, is designed for natural language question-answering tasks, 
helping search engines better understand and predict complex user behaviors and product relationships. 

To improve the accuracy of search and recommendation results, the R-GCN model, proposed by 

Michael Schlichtkrull et al. in 2018, can be applied. By introducing unique convolutional operations for 

different types of relationships, R-GCN enhances the representation and modeling of multi-relational 
data, addressing the limitations of search engines in handling complex queries involving multiple 

relationships. 

5.  Conclusion 
This paper discusses the significance and advantages of AI technologies in the construction, reasoning, 

and application of KGs. By incorporating advanced technologies such as deep learning, reinforcement 

learning, and graph convolutional networks, the efficiency of knowledge graph construction, reasoning 

capabilities, and application outcomes have been significantly improved. Through practical application 
cases, the paper showcases the broad application prospects and immense commercial value of KGs in 

fields such as search engine optimization, personalized recommendations, and career matching. In the 

future, as AI technologies continue to develop, knowledge graphs will play an increasingly important 
role in data mining and business analytics, driving intelligent transformation and innovation across 

various industries. 
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