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Abstract. Emotion recognition is a branch of artificial intelligence that analyzes human 

emotional states through facial expressions, voice, or physiological signals. It enhances human-

computer interaction, facilitating more personalized and empathetic technology experiences, 

crucial for fields like mental health, customer service, and human-robot interaction. In recent 

years, research on emotion recognition using these tools has grown rapidly, involving multiple 

interdisciplinary fields. With the aid of electroencephalogram (EEG)-based brain-computer 

interfaces (BCIs), the emotional states of users can be sensed and analyzed. It offers a direct, 

non-intrusive insight into user emotions, enhancing user experience and system responsiveness. 

This approach is crucial for developing adaptive artificial intelligence (AI) in fields like 

healthcare for personalized treatments and in entertainment for immersive experiences, 

advancing human-technology symbiosis. This paper compares five current machine learning 

(ML)-based emotion recognition methods leveraging EEG signals, aiming to evaluate their 

effectiveness and applicability in emotion recognition. The paper concludes that while both 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have their 

strengths, the combination of them provides the best performance in EEG-based emotion 

recognition. 

Keywords: Brain-computer interfaces, emotion recognition, convolutional neural network,Long 

short-term memory network, machine learning. 

1.  Introduction 

Emotional recognition is a significant domain within artificial intelligence (AI), focusing on the 

interaction between computational systems and human emotions. Automatic emotion recognition 

technology, which utilizes electroencephalogram (EEG) signals and brain-computer interfaces (BCIs), 

identifies and interprets emotional states [1]. Advancements in these technologies, including reduced 

equipment costs, have enabled deeper research into the relationship between emotional states and EEG 

fluctuations, thus accelerating the rapid development of emotion recognition technology. Emotional 

states significantly impact decision-making processes, playing a role in either facilitating or hindering 

problem-solving. Positive emotional states not only enhance an individual's emotional intelligence but 

also contribute to greater success in personal and professional realms. Furthermore, a deeper 

understanding of one's emotional states aids in better mental health management and optimized work 

performance. Automatic emotion recognition systems provide critical insights into emotional dynamics, 
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promoting effective communication between individuals and between humans and computational 

systems. Integrating automatic EEG-based emotion recognition technology into AI systems is expected 

to transform the way humans interact with their environment, enriching personal relationships and being 

crucial for developing efficient human-computer interaction AI systems. As emotion recognition 

technology continues to evolve, it will play an increasingly vital role in how AI systems adapt to and 

support human emotional needs [2,3]. 

Typically, voice cues, physiological data, or facial expressions are used as the basis for automatic 

emotion recognition. Though physiological signals are more robust and noise-resistant, they more 

accurately reflect emotional state fluctuations than external expressions like voice and facial expressions, 

which are subject to both individual subjective intentions and external environmental influences. 

Consequently, in the field of emotional computing, emotion recognition based on physiological 

signals—particularly multi-channel EEG signals—has drawn more attention in recent years. 

Significant benefits have been demonstrated by deep learning in managing complicated data, 

particularly unstructured data. Its capacity to autonomously extract features—as opposed to classical 

machine learning, which depends on human created features—is its biggest asset. Because of this, deep 

learning now performs remarkably well in domains including biological signal processing, computer 

vision, and natural language processing. For EEG signal processing, deep learning has become a hot 

research direction. 

Convolutional Neural Networks (CNNs) are primarily used for processing data with spatial structure 

and were first widely applied in the field of image processing [4]. For EEG signals, CNNs can capture 

the spatial correlations between different electrode positions, automatically extracting spatial features 

and avoiding the need for manually designing complex features. The advantage of CNNs lies in their 

ability to effectively extract local spatial information, especially for signals with local correlations. 

However, CNNs, which mainly target spatial features, have relatively limited capability in capturing 

time series features, thus performing poorly in tasks that rely on temporal information. 

Long Short-Term Memory (LSTM) is a recurrent neural network that excels in modeling time-

dependent data, particularly due to its ability to capture long-term dependencies via a unique memory 

cell structure [5]. Unlike traditional RNNs, LSTM mitigates the vanishing gradient problem, making it 

ideal for tasks involving long-sequence dependencies. However, while effective in temporal feature 

extraction, LSTM often neglects spatial information, such as inter-electrode relationships in EEG data. 

This study conducts a comparative analysis of convolutional neural networks (CNNs) and long short-

term memory (LSTM) networks. Using a 75-25 split on the preprocessed DEAP dataset, both models 

produced favorable performance outcomes, demonstrating their effectiveness in EEG-based emotion 

recognition [6] LSTM performed particularly well in processing sequential data, effectively capturing 

dependencies between time steps, making it very suitable for sequence prediction tasks. Although the 

data is not continuous, its inherent sequential characteristics allow LSTM to achieve significant 

predictive accuracy. In contrast, CNN is known for its computational efficiency, enabling faster 

predictions. This efficiency is a key consideration in this study for introducing CNN, as it can speed up 

processing without significantly reducing accuracy, making it highly valuable in applications where 

speed is crucial. The study found that LSTM, designed for processing time-related data, can effectively 

track and capture long-term dependencies, giving it an advantage in tasks that require memory across 

multiple time steps. CNN, on the other hand, has become the standard model for spatial pattern 

recognition tasks through the efficient data processing capabilities of its convolutional layers. 

2.  Related work 

Deep learning has proven superior to traditional machine learning approaches in fields such as computer 

vision, natural language processing, and biomedical signal analysis. This trend is particularly evident in 

EEG-based emotion recognition, where deep learning models either act as classifiers post-feature 

extraction or function as end-to-end systems, bypassing manual feature engineering. For example, Yang 

et al. integrated differential entropy (DE) from EEG signals with continuous CNNs for classification [7]. 

Similarly, Song et al. designed DE features based on the spatial relationships between EEG electrodes 
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and used graph convolutional neural networks (GCNs) for classification [8]. Some deep learning 

architectures are inherently data-driven, eliminating the need for predefined feature extraction. For 

example, Alhagry et al. proposed a model capable of end-to-end processing of raw EEG signals, which 

learns features through LSTM recurrent neural networks (RNNs) and classifies using fully connected 

layers [9]. Additionally, Yang et al.A parallel convolutional recurrent neural network (CRNN) has 

demonstrated notable effectiveness in enhancing the accuracy of EEG-based emotion recognition [10]. 

However, the challenge of extracting highly discriminative features from EEG signals persists. 

Developing more sophisticated deep learning architectures that can directly extract and classify features 

from raw EEG data is crucial for advancing research in this area. 

3.  Method 

3.1.  Dataset 

The DEAP dataset collection was conducted in two phases to provide comprehensive emotional and 

physiological data [6]. In the first phase, 14-16 participants rated 120 one-minute YouTube music videos 

across five emotional dimensions, with results recorded in CSV or XLS files. The second phase involved 

32 volunteers providing physiological data, including raw EEG signals from 40 out of 120 videos, and 

facial expression videos for 22 subjects. The dataset also includes YouTube video links and a 

questionnaire. 

EEG signals, originally sampled at 512 Hz, were preprocessed to 128 Hz, involving downsampling, 

filtering, artifact removal, and were provided. Each Python file contains a Data array with dimensions 

of 40 × 40 × 8064, representing data from 40 EEG channels for each video, with 8064 data points per 

channel, totaling 322,560 data points, and a labels array of shape 40 × 4, representing EEG data and 

emotional dimensions, respectively. 

In the dataset's feature extraction process, Fast Fourier Transform (FFT) was utilized to reduce the 

data dimensions from (40,40,8064) to (58560,70), optimizing computational efficiency and improving 

model performance. The extracted features represent five critical EEG frequency bands: Theta (4–8 Hz), 

Delta (1–4 Hz),Beta (14–31 Hz)Alpha , (8–14 Hz), and Gamma (31–50 Hz). Using the PyEEG Python 

library, 70 features were derived. By transforming signals from the time to the frequency domain, FFT 

effectively computes the Discrete Fourier Transform (DFT) of the time series, aiding in the identification 

of relevant frequency-specific patterns. By employing an iterative method to calculate DFT coefficients, 

FFT significantly reduces computation time and complexity, while also minimizing rounding errors that 

may occur during computation. The model uses 14 electrode channels and five frequency bands, with a 

window size of 256 samples, and calculates the average power of the frequency bands within a 2-second 

window. The step size is 16 samples, thus updating every 0.125 seconds. 

3.2.  CNN 

CNNs were originally prevalent in image processing due to their ability to efficiently handle data with 

spatial structure [4,11]. This strength has since been leveraged in other fields, including EEG-based 

emotion recognition.Image data has distinct spatial features, such as local correlations between pixels, 

which allows CNNs to automatically extract local features through convolution operations, significantly 

enhancing the performance of tasks like image classification and object recognition. This capability is 

also applicable to EEG signal processing, particularly in effectively capturing the spatial structural 

features present in EEG signals. EEG signals, which originate from the electrical activity at various 

electrode locations in the brain, have spatial distributions and inter-electrode correlations that are crucial 

for analyzing electroencephalogram data. CNNs can automatically extract these spatial features through 

their convolutional layers, eliminating the need for manually designing complex feature extraction 

algorithms, thus simplifying the feature engineering process. 

The initial convolutional layer uses the Rectified Linear Unit (ReLU) activation function and 

contains 128 convolution kernels, each of size 3. The number and size of the kernels have been 

extensively fine-tuned through hyperparameter optimization, including grid searches and manual 
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adjustments. The input shape of the first 1D convolutional layer is (70,1), and it uses 'same' padding and 

a stride of 1 to ensure that the spatial dimensions of the input remain unchanged during the convolution 

process. 

The convolutional layer's output is normalized via Batch Normalization to achieve zero mean and 

unit variance. A 1D max pooling layer with a window size of 2 is then applied, downsampling the feature 

map by extracting the maximum values within each window. With default settings for padding ('valid') 

and stride ('none'), the dimensions of the resulting feature map are computed using the following formula: 

                                                               n
out

= [
n

in
+2p−k

s
] + 1                                                              (1) 

Although CNNs excel at extracting spatial features, their performance in handling time series data is 

relatively limited. EEG signals contain not only spatial structural information but also temporal 

continuity and dynamic changes. Traditional CNNs are primarily optimized for spatial features, and 

their convolutional operations are less capable of capturing time series features. Therefore, when tasks 

rely on temporal information, such as time series prediction or dynamic pattern recognition, CNNs may 

not perform as well as other models specifically designed to handle time series data, like RNNs or 

LSTMs. 

To fully leverage temporal information, it is often necessary to combine CNNs with other models 

that process time series data. This combined strategy can compensate for the shortcomings of CNNs in 

temporal feature extraction, enabling a comprehensive analysis of the complex spatial and temporal 

features in EEG signals. The integrated use of CNNs and time series models, such as RNNs or LSTMs, 

can enhance the overall effectiveness of electroencephalogram data analysis and improve the 

performance of emotion recognition and other complex analytical tasks. 

3.3.  LSTM 

LSTMs, a specialized variant of RNNs, were developed to address the limitations of traditional RNNs 

in managing long-term dependencies. Originally designed for processing time series data, LSTMs are 

particularly well-suited for EEG signals due to their ability to capture temporal continuity. LSTMs 

achieve this through a gating mechanism, consisting of input, forget, and output gates, which 

collaboratively regulate the flow and retention of information [5,12]. All gates employ the sigmoid 

activation function, outputting values between 0 and 1 to control the degree of information retention. 

The mathematical representations of these gates are as follows: 

 𝑖𝑡 = 𝜎 [𝜔𝑖 (ℎ𝑡−1
, 𝑥𝑡) + 𝑏𝑖] (2) 

The equation determines the portion of new information at time step t to be retained in the cell state. 

The input gate's activation value, computed via the sigmoid function, quantifies the importance of this 

incoming information, ensuring that relevant data is preserved for long-term dependencies.. 

The equation for the forget gate is: 

 𝑓𝑡 = 𝜎 [𝜔𝑓 (ℎ𝑡−1
, 𝑥𝑡) + 𝑏𝑓] (3) 

The role of the forget gate is to determine which information needs to be discarded. Its output is 

modulated by the sigmoid function to decide how much of the previous information to retain in the cell 

state, thereby facilitating the clearance of information that is no longer useful. 

The equation for the output gate is: 

 𝑜𝑡 = 𝜎 [𝜔0 (ℎ𝑡−1
, 𝑥) + 𝑏0] (4) 

The role of the output gate is to generate the final output activation value, determining the content of 

the output at the current time step. The activation value, calculated by the sigmoid function, is used to 

adjust the impact of the cell state, ensuring the effectiveness of the output information. 
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In experiments, bidirectional LSTM layers are primarily applied. The design of these equations 

ensures that the LSTM network can effectively manage the storage and forgetting of information when 

processing long sequences of data, thereby improving the performance of traditional neural networks in 

tasks involving long-term dependencies. 

3.4.  Convolutional Recurrent Neural Networks (CRNNs) 

CNNs and LSTMs are combined in CRNNs to process data with temporal and spatial dependencies 

efficiently. Local patterns in photos or other data with spatial structure are examples of the spatial 

characteristics that are first extracted by the CNN in a convolutional neural network (CRNN). To be 

processed further by the LSTM, these spatial features are converted into high-dimensional feature 

vectors. Capturing temporal dependencies in the input data is the LSTM's main job. Through the 

interaction of input, forget, and output gates, the LSTM—an improved recurrent neural network—

dynamically modifies the flow and forgetting of information, effectively modeling important temporal 

dependencies in sequences while ignoring short-term dependencies or unimportant noise.Through this 

technique, the LSTM can more accurately capture richer temporal information and simulate long-term 

contextual connections in sequential data. LSTMs are usually coupled in series with CNNs in the 

integrated architecture of CRNNs to handle the sequence of feature vectors collected by the CNN, 

supporting time series information for further tasks such as regression or classification. CNNs and 

LSTMs work together to create CRNNs, which are especially useful for jobs requiring the capture of 

both spatial and temporal data, like speech recognition and video processing. LSTMs' potent capacity 

to capture long-term sequence dependencies is a major contributing reason to the CRNN architecture's 

success. 

4.  Results 

In the experimental results, the outcomes and conclusions based on the aforementioned methods were 

discussed. Various model architectures were constructed, and multiple training sets were attempted. As 

shown in Table 1, the LSTM model achieved an accuracy of 88.6% with a 75-25 training-test dataset 

split, while the CNN model obtained 87.4% accuracy, and the CRNN model achieved an accuracy of 

90.6%. 

Table 1. Performance comparison of various models. 

 Accuracy Loss 

CNN 88.6% 0.741 

LSTM 87.4% 0.401 

CRNN(CNN+LSTM) 90.6% 0.398 

 

In order to provide a fair comparison, the performance of the CNN, CRNN, and LSTM models was 

evaluated in this study utilizing a shared dataset and a 75-25 split. With 88.6% accuracy, the CNN model 

successfully captured geographical features, however it had issues with long-term temporal connections. 

Time series data was handled exceptionally well by the LSTM model, which achieved 87.6% accuracy 

because to its sophisticated gating mechanisms. With a 90.6% accuracy rate, the CRNN model—which 

combines the temporal modeling of LSTM with the spatial feature extraction of CNN—performed better 

than both, showcasing its prowess in handling complicated data with both spatial and temporal 

information. 

5.  Discussion 

This study indicates that the combined CNN-LSTM model outperforms the use of either model alone 

on the dataset, yet it has some shortcomings. Firstly, the current experiments only considered the basic 

integration of CNN and LSTM. Future research could explore more complex model combinations and 

optimization strategies, such as incorporating additional deep learning algorithms or feature fusion 

methods, to further enhance performance. Secondly, the experimental data and application scenarios in 
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this study are limited, so the adaptability to different datasets and real-world application environments 

still needs further validation. Future work should consider testing the generalization capabilities of these 

models across a broader range of application scenarios. 

Combining multiple algorithms has distinct advantages. Different algorithms excel at processing 

specific types of data and tasks. By effectively integrating them, the strengths of each algorithm can be 

fully leveraged, thereby enhancing the overall system performance. For instance, whereas LSTMs are 

better at identifying long-term dependencies in time series data, CNNs excel at extracting spatial features 

from image data. Combining the two not only utilizes CNNs' powerful feature extraction capabilities 

but also benefits from LSTMs' modeling of temporal dynamics, leading to a more comprehensive 

understanding of complex data patterns. To further enhance model performance and adaptability, future 

research may look into various deep learning model and algorithm types, such as Transformers and 

Graph Neural Networks (GNNs). By continuously optimizing and expanding model combinations, more 

accurate and efficient solutions can be achieved across various domains and tasks. 

6.  Conclusion 

Technology that uses EEG signals for emotion identification has had a big impact on the field. An 

examination of deep learning-based techniques has been provided in this research, with an emphasis on 

how well CNNs and LSTM networks distinguish emotional states from EEG data. The findings 

underscore the complementary strengths of CNNs and LSTMs and the integration of these two 

approaches within a CRNN framework has yielded the most promising results, achieving the highest 

accuracy rate of 90.6% in experiments. The success of the CRNN model can be attributed to its ability 

to harness both spatial and temporal features, offering a more holistic analysis of EEG data. This dual 

capability addresses the limitations inherent in models that rely solely on either spatial or temporal data, 

thus enhancing the predictive power and accuracy of emotion recognition systems. In the future, the 

continued development and refinement of these deep learning models will be instrumental in advancing 

systems that can more effectively interact with and respond to human emotions.  
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