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Abstract. Emotion recognition is an important research direction in the field of natural language 

processing. It is widely used in social media monitoring, product feedback analysis, and medical 

diagnosis, and it has significant practical value. The task of emotion recognition aims to 

recognize the emotional orientation of text through analysis. Word embedding technology is a 

key component in emotion recognition tasks; it helps the model capture sentiment relationships 

within the context by converting words into dense vectors, which is crucial for the model's 

performance. This paper is based on the Internet Movie Database (IMDB) and investigates the 

performances of different word embedding methods, including Rand, Static, Non-static, and 

Multi-channel, in sentiment recognition tasks. It also evaluates their effects on various neural 

network architectures. The experimental results show that random initialization performs best, 

especially in complex networks, demonstrating strong classification capability and training 

efficiency. This indicates that deep learning models have strong adaptive capabilities in 

sentiment recognition tasks. Even without the help of pre-trained word vectors, the model can 

still effectively capture the sentiment information in text. 
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1.  Introduction 

Emotion recognition is an important research direction in the field of natural language processing. As 

the internet becomes more widespread, users produce massive amounts of text data on platforms such 

as social media, movie reviews, and product feedback [1,2]. These data contain abundant emotional 

information. Product developers could automatically analyze and extract sentiment tendencies through 

emotion recognition techniques, which could provide significant value in many practical applications. 

For example, in the business field, emotion recognition could help companies better understand 

customers' emotions to improve their products or services. In social media monitoring, it could be used 

to track real-time fluctuations in public sentiment to provide decision support. Additionally, in the 

medical field, emotion recognition could help analyze patients' moods and assist in diagnostic and 

treatment processes. 

Neural networks and deep learning methods have powerful capabilities in processing complex data 

structures, especially showing significant advantages in natural language processing tasks [3,4]. The 

word embedding method is one of the core techniques in deep learning for representing textual semantics 
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in text sentiment analysis tasks. Different embedding methods can capture different levels of semantic 

information and show varying effects in the task. 

A great embedding method can effectively capture contextual relationships and accurately represent 

the semantics of low-frequency words, which could improve the model's generalization capability [5,6]. 

However, choosing inappropriate word embedding methods will cause the model to not fully understand 

the semantic relations between the texts. This can limit the model's generalization ability, especially in 

processing low-frequency words and complex contexts. Such limitations will manifest in subsequent 

emotion recognition tasks as a decrease in classification abilities or an inability to adapt to new data. 

Therefore, it is crucial to choose an appropriate word embedding method for emotion recognition 

tasks. It can not only improve the model's classification capability but also effectively avoid overfitting 

or underfitting problems during training. The focus of this research is to explore the impact of different 

word embedding methods on the model's emotional recognition ability. Specifically, this paper will 

evaluate the performance of random initialization, static, non-static, and multi-channel embedding 

methods across various neural network structures, including text Convolutional Neural Network 

(TextCNN), Recurrent Neural Network (RNN), Bi-directional RNN (BiRNN) [7]. By using experiments 

to compare the effectiveness of these embedding methods on emotion recognition tasks, this paper could 

provide effective guidance for designing emotional classification structures.  

2.  Methodologies 

This research explores the impact of different word embedding methods on several base neural network 

models [7,8]. This section provides a detailed introduction to the types of embedding methods and neural 

network structures used in this study. 

2.1.  Word embedding approaches 

2.1.1.  Rand. This type of initialization uses random assignment to populate the embedding layer's 

matrix, with each word being assigned a word vector randomly. Typically, it employs either a uniform 

distribution or a normal distribution to generate the vector representations. This method relies entirely 

on the model to learn effective word representations, meaning it is not restricted by a pre-trained corpus 

and can adaptively learn features specific to tasks.  

2.1.2.  Static. This initialization technique uses pre-trained word vector models, such as FastText, 

Word2Vec, and Global Vectors for Word Representation (GloVe) [9]. These models are typically 

trained on large-scale corpora, enabling them to learn rich and generalizable semantic information. The 

term "static" indicates that the word vector representations will not be fine-tuned during training, which 

can make the word vector representations more stable throughout the training process.  

2.1.3.  Non-static. This initialization method also employs a pre-trained word vector model to generate 

the embedding matrix. However, unlike the static method, the embedding matrix in this approach can 

be updated during the training process. It utilizes a pre-trained model to obtain the initial values, which 

are then fine-tuned through backpropagation. This allows the word vectors to adapt to the specific task 

and dataset.  

2.1.4.  Multi-channel. In this method, multi-channel refers to the combination of static and non-static 

embedding methods to create multiple channels, similar to multi-channel image inputs in computer 

vision. Both channels use a pre-trained word vector model, but one channel is trainable while the other 

is not. They are then combined and fed into the neural network model, which can make the embedding 

process more stable during training while still allowing for sufficient flexibility to fine-tune itself.  
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2.2.  Neural network modules 

This research adopts several deep learning models as the basic modules. These models each have their 

own advantages in natural language processing tasks [8,10]. 

2.2.1.  TextCNN. TextCNN is an implementation of CNN in text classification. It can effectively capture 

local n-gram features. The various types of convolutional layers extract text features at different 

granularities through sliding windows. Therefore, it is well-suited for handling short texts and 

identifying important local features in a task.  

2.2.2.  RNN. RNN models sequence data through a recursive structure with shared parameters, making 

it suitable for processing sequential data and capturing contextual dependencies in text sequences. 

However, because it uses shared parameters to process the data, it is prone to the vanishing gradient 

problem. Additionally, it may struggle to capture long-range dependencies.  

2.2.3.  Long Short-Term Memory (LSTM). LSTM is an improved version of the RNN, specifically 

designed to alleviate the vanishing gradient problem. By introducing memory cells and gating 

mechanisms, the LSTM can effectively capture long-range dependencies and performs particularly well 

in handling long texts.  

2.2.4.  Gated Recurrent Unit (GRU). GRU is a simplified version of the LSTM. It eliminates the memory 

cell and directly stores information in the hidden layers. This modification reduces its parameter count 

and can make it more computationally efficient than the LSTM. Its structure is particularly efficient for 

handling medium-length text sequences but may perform worse than LSTM in tasks that require the 

ability to process long-range dependencies.  

2.2.5.  BiRNN, BiGRU, BiLSTM. "Bi-" means bidirectional, indicating that these network layers use a 

bidirectional recurrent neural network structure. In traditional unidirectional RNNs, LSTMs, and GRUs, 

input data is passed from the start to the end of the sequence, and the network only considers past 

information. However, in bidirectional networks, the neural network passes information simultaneously 

from both the start and the end, and the outputs from both directions are integrated together. This allows 

the model to consider not only past information but also future information for prediction. Specifically, 

there are two sub-networks in a bidirectional network: one processes the forward sequence, and the other 

processes the backward sequence. Their outputs are combined for subsequent processing. The 

bidirectional structure is often used in natural language processing tasks, such as translation and 

sentiment classification, where information at the current moment depends not only on past words but 

also on subsequent words.  

2.3.  Architectures of neural network 

In this research, each neural network consists of an input layer, an embedding layer, a core layer, such 

as TextCNN, RNN, LSTM, etc., and an output layer. The structures of all neural networks are shown in 

Figure 1. 

The text sequence is input to each model as a tensor, and the embedding layer converts it from a 

vector to a word vector matrix. This matrix is then passed to the core neural network. In TextCNN, the 

convolutional layer uses convolutional kernels of different sizes (2, 3, 4, 5) to extract n-gram features 

of various granularities. Following this, a global max pooling layer is used to extract the most important 

features and concatenate them. In other models (RNN, BiRNN, LSTM, BiLSTM, GRU, BiGRU), the 

word vector matrix is fed into the respective RNN/BiRNN/LSTM/BiLSTM/GRU/BiGRU layer, with 

the size of the hidden layer set to 128. After passing through the core neural network, data enters a dense 

layer with 250 neurons, which use Rectified Linear Unit (ReLU) as the activation function. Subsequently, 

there is a dropout layer with a dropout rate of 0.3. Finally, data is classified by the output layer, which 

has a single neuron with a sigmoid activation function. 
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Figure 1. Model architectures of (a) RNN/LSTM/GRU, (b) Bi-RNN/LSTM/GRU, and (c) CNN (Figure 

Credits: Original). 

2.4.  Evaluation metrics 

To comprehensively evaluate the model's performance, this research employs five commonly used 

classification evaluation metrics: accuracy, precision, recall, F1 score, and the time required for the 

models to achieve the optimal valid loss. Through these evaluation metrics, researchers can measure the 

model's performance from multiple dimensions, including classification accuracy, as well as the model's 

training efficiency and time cost. 

3.  Results and discussion 

3.1.  Dataset and preprocessing 

In this research, the program utilizes the Internet Movie Database (IMDB) which was published by 

Stanford University [11]. This dataset includes a large number of movie reviews from the Internet Movie 

Database, and it has been preprocessed to fit the binary classification task for sentiment analysis. The 

dataset is commonly used for sentiment analysis tasks in testing classification, with each review labeled 

as positive or negative. 

The dataset consists of 50,000 movie reviews, with 25,000 allocated for training and 25,000 for 

testing. It contains an equal number of positive and negative reviews, which helps avoid the class 
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imbalance problem. Each review is presented in English text, and all reviews have corresponding labels, 

where 0 indicates a negative comment and 1 indicates a positive comment. To prevent neutral critiques 

from causing confusion, each comment selected for the dataset has a clear emotional inclination. For a 

further understanding of sentence length, the distribution of sentence lengths is shown in Figure 2. 

To simplify calculations, the program retains only the most common 20,000 words, discarding those 

that rarely emerge. All film reviews have been padded or truncated to the same length. In this research, 

statistical analysis was conducted to determine the optimal sentence length, which helps avoid excessive 

padding or truncation that could lead to significant loss of sentiment information. 

 

Figure 2. Distribution of sentence length (Figure Credits: Original). 

3.2.  Training details 

This research used the FastText pre-trained model "crawl-300d-2M-subword" to perform word vector 

representation. This model is developed by Meta's AI research group and is trained on a large-scale web 

corpus from Common Crawl. It contains 2 million words and uses subword information to build the 

embedding model. Given that user comments often contain non-standard spellings and rare phrases, 

using the crawl-300d-2M-subword model can aid in analyzing these words. 

All of these models are based on the TensorFlow and Keras frameworks and are run in NVIDIA 

GeForce RTX 4090 GPU environments. For training, all models used the Adam optimizer with its 

default settings for the learning rate to ensure consistency across experiments. The batch sizes were 

adjusted for different model architectures to balance computational efficiency and VRAM usage, with 

TextCNN using a batch size of 2048, LSTM and BiLSTM using 512, and RNN, BiRNN, GRU, and 

BiGRU using a batch size of 1024. Training was capped at 100 epochs, with an early stopping 

mechanism in place to halt training after 10 epochs without improvement in validation loss. The output 

layers of all models used a sigmoid activation function suitable for binary classification, while the hidden 

dense layers employed ReLU to facilitate calculation and avoid vanishing gradient issues. To further 

combat overfitting, L2 regularization was applied to TextCNN models, and a dropout rate of 0.3 was 

uniformly incorporated across all models. The loss function used for training was Binary Crossentropy, 

which is appropriate for the binary classification task. 

Proceedings of  CONF-MLA 2024 Workshop:  Securing the Future:  Empowering Cyber Defense with Machine Learning and Deep Learning 
DOI:  10.54254/2755-2721/94/2024MELB0084 

214 



 

 

3.3.  Performance comparison 

This research compares the performances of four different types of word embedding methods—Random 

Initialization, Static Pre-trained Embeddings, Non-static Pre-trained Embeddings, and Multi-channel 

Embeddings—across various model structures (CNN, RNN, LSTM, GRU, BiRNN, BiLSTM, BiGRU). 

To mitigate the impact of random factors during model training on the conclusions, the program was 

run individually five times for each setup. This work recorded the maximum value of validation accuracy 

from each experiment and used its average value as the final performance indicator, as listed in Table 1. 

Additionally, the program recorded the average time taken for each network structure to achieve the best 

validation loss, as shown in Table 2.  

Table 1. Comparison of accuracy across various word embedding methods and models. 

 Rand Static NonStatic MultiChannel 

BiGRU 0.8682 0.7803 0.8579 0.8641 

BiLSTM 0.8794 0.7766 0.8780 0.8782 

BiRNN 0.8461 0.6470 0.8340 0.8203 

CNN 0.8914 0.8600 0.8858 0.8653 

GRU 0.8528 0.8028 0.8592 0.8564 

LSTM 0.8755 0.7456 0.8693 0.8668 

RNN 0.8474 0.5762 0.8337 0.8040 

Table 2. Comparison of time cost across various word embedding methods and models. 

 Rand Static NonStatic MultiChannel 

BiGRU 16.73 142.12 18.38 19.87 

BiLSTM 17.47 176.14 19.41 20.96 

BiRNN 58.71 154.83 54.89 56.93 

CNN 48.70 325.70 52.33 421.83 

GRU 10.33 108.35 9.98 13.26 

LSTM 9.372 88.64 11.19 12.42 

RNN 25.30 34.49 33.22 36.10 

4.  Discussion 

In this research, the random initialization word embedding method performed well in the vast majority 

of models. As Table 1 shows, random initialization became the best embedding method in almost all 

types of neural network architectures except for the GRU. This result breaks the regular expectation that 

using pre-trained word embedding models should generally be better than randomly initializing the word 

embedding matrix and training it on the dataset. In fact, the random embedding method even achieved 

a very high validation accuracy in the TextCNN structure (0.8914). It demonstrates that even without 

using a pre-trained embedding model, the random initialization method still has enough capability to 

help the deep learning model learn effective feature representations from the training dataset, especially 

in complex networks such as TextCNN and BiLSTM. On the other hand, this embedding method also 

became the fastest converging method among all the embedding methods except in the GRU structure. 

Even though pre-trained word vector models contain high-level semantic information, the 

experimental conclusion shows that pre-trained embeddings (Static and Non-static) did not achieve the 

best performance in most neural network structures. It also shows that using a non-static embedding 

method is significantly better than using a static embedding method. Readers can see a significant 

decrease in accuracy in Table 1 when changing the embedding method from non-static to static. The 

most severe decline is in the RNN structure (non-static's accuracy is 0.8337, but static's accuracy is only 

0.576183999), which is close to randomly guessing the classification. 
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From the perspective of time cost, as shown in Table 2, using a static embedding method takes several 

times longer than other embedding methods, except in the RNN. However, considering its average 

accuracy in the RNN structure is only 57.62%, it is fair to say that this model is unable to fit properly. 

Multi-channel embeddings combine static and non-static word vectors and could be more stable than 

just non-static and more flexible than static embeddings. In BiGRU and BiLSTM network structures, 

their accuracy is close to that of random initialization. However, Table 1 also shows that its validation 

accuracy is worse than that of non-static in five out of the seven models. In the two models where multi-

channel is better, the multi-channel word embedding method only slightly outperforms the Non-static 

method in terms of accuracy (by less than 0.007). On the other hand, the multi-channel embedding 

method takes more time for models to fit in all kinds of structures, as shown in Table 2. Especially in 

TextCNN tasks, it takes nearly eight times longer to fit the model and ultimately results in poorer 

accuracy. 

Overall, the random initialization method performs best in the binary classification of emotions. It 

shows that deep learning networks can effectively train themselves to represent the emotional inclination 

of words from random initialization. The significantly different performance between the static 

embedding method and the non-static and multi-channel embedding methods demonstrates the big 

difference between models that can optimize the embedding matrix and those that cannot. This also 

indirectly highlights the ability of deep learning models to train word embedding matrices to fit text 

sentiment classification tasks. 

5.  Conclusion 

This text uses the IMDB dataset to explore different word embedding methods across multiple neural 

network structures in sentiment classification tasks. The dataset includes 50,000 movie reviews that 

have been pre-processed, with 25,000 reviews in the training dataset and 25,000 in the test dataset. Both 

contain a balanced number of positive and negative reviews, making it suitable for binary classification 

tasks. 

This research compares the performance of random initialization, static pre-trained initialization, 

non-static pre-trained initialization, and multi-channel embedding methods on various neural networks 

(TextCNN, LSTM, BiLSTM, etc.). The results show that random initialization performs best on most 

models, especially achieving high accuracy with TextCNN and BiLSTM (TextCNN reaching 0.8914, 

BiLSTM reaching 0.8794). This indicates that random initialization can effectively help models study 

and capture textual emotional features even without information from pre-trained word vectors. 

Although pre-trained word embedding models typically contain rich semantic information, 

experiments show that the non-static pre-trained embedding method is significantly better than the static 

method. Particularly in RNN models, using a static embedding method leads to a substantial drop in the 

model's accuracy, approaching the level of random guessing (only 0.5762). In contrast, using a non-

static approach can dramatically improve the model's performance. 

Although multi-channel word embeddings combine static and non-static methods, their performance 

is still slightly inferior to that of using non-static embedding methods in most models. Additionally, the 

research finds that random initialization not only outperforms other embedding methods in terms of 

validation accuracy but also has a clear advantage in training time. For instance, random initialization 

is significantly faster than static embedding, with an average training time of only 17.47 seconds 

compared to 176.14 seconds needed for static embedding methods. 

In summary, this research indicates that the random initialization method performs exceptionally 

well in text sentiment classification tasks, especially in more complex neural network models such as 

TextCNN and BiLSTM. Even without relying on pre-trained embeddings, random initialization can 

enable the model to effectively learn word emotional features suitable for classification. This result 

demonstrates that deep learning models have strong self-learning abilities in sentiment classification 

tasks and can effectively capture word sentiment information from random initialization. The static word 

embedding method is markedly behind the non-static and multi-channel methods, further highlighting 

the importance of fine-tuning word vectors during the training process in sentiment analysis tasks. 
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