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Abstract. Solving Partial Differential Equations (PDEs) is essential across various fields, 
including physics, mathematics, and engineering. This study explores innovative methods for 

solving PDEs using Convolutional Neural Networks (CNNs). Traditionally, solving PDEs 

through numerical methods like finite difference or spectral approaches is computationally 

intensive, particularly when addressing high-dimensional problems and complex boundary 

conditions. CNNs, with their ability to handle spatial data efficiently, offer a promising 

alternative.  This research evaluates different neural network architectures, including data-driven, 

physics-driven, and hybrid approaches, and their role in enhancing the accuracy and scalability 

of PDE solutions.  Data-driven methods rely on extensive datasets for training neural networks, 

while Physics-Informed Neural Networks (PINNs) integrate the underlying physical laws into 

the solution process. Hybrid approaches combine both strategies, leveraging data and physical 

principles. The paper emphasizes CNNs’ potential to transform traditional PDE-solving methods, 

making them more efficient and adaptable to complex, real-world applications. Future research 
directions include optimizing these methods for greater scalability and interdisciplinary 

applications. 

Keywords: Partial differential equation, Physics-informed neural networks, Convolutional 

neural networks. 

1.  Introduction 

Differential equations (DEs), particularly Partial Differential Equations (PDEs), are fundamental in 

modeling complex phenomena across various scientific disciplines, such as the Schrödinger equation. 
It describes the evolution of the quantum state of a system, and the nonlinear Black-Scholes equation, 

used to model derivative pricing under market impact. PDEs are crucial for describing systems with 

multiple variables and their interactions. However, finding analytical solutions is frequently infeasible 
because of their intrinsic complexity, non-linearity, and multi-dimensionality. Approximating PDE 

solutions is typically addressed through conventional numerical methods such as spectral methods, finite 

difference schemes, and finite element analysis [1]. Nonetheless, these approaches encounter significant 

obstacles, such as elevated processing expenses, limitations in handling intricate boundary conditions, 
and restricted scalability in high-dimensional problems. 

Despite improvements in traditional methods, their limitations remain, particularly when dealing 

with complex boundary conditions, high-dimensional spaces, and real-time applications. The “curse of 
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dimensionality” remains a significant obstacle, as computational costs increase exponentially with the 

number of dimensions [2]. Accuracy is also compromised in scenarios requiring fine resolution or fast 

processing times. 

Over recent years, the advent of deep learning has introduced innovative approaches to addressing 
differential equations, with a particular emphasis on the application of neural networks [3].  Among 

these advancements, Convolutional Neural Networks (CNNs) have attracted considerable interest due 

to their proficiency in handling grid-like data, making them well-suited for problems involving spatial 
hierarchies [4]. Neural networks offer distinct advantages over traditional methods, including learning 

directly from data, adapting to complex and irregular domains, and generalizing across diverse problem 

settings [5]. These capabilities make them promising for tackling the challenges posed by PDEs. 

This article highlights the application of neural networks for resolving differential equations, 
focusing on the innovations that have emerged in recent years. The existing work is categorized into 

three main approaches: data-driven, physics-driven, and hybrid-driven methods. Data-driven 

methodologies employ extensive datasets to train neural networks, with the goal of establishing 
immediate correlations between inputs and solutions. Physics-driven methods exploit the underlying 

physical laws for the model training, which ensures the solutions are consistent with the governing 

equations. Hybrid-driven methods combine the strengths of both approaches, using data to inform the 
network while enforcing physical constraints. By examining these methods, this paper provides a 

comprehensive overview of current research, evaluates strengths and limitations, and suggests directions 

for future work.  

2.  Deep learning methods for solving DEs 
The application of neural network to solve differential equations represents a significant shift in how 

these mathematical problems are approached. 

Traditionally, solving PDEs like the ones represented by the general form: 

 𝐹(𝑥, 𝑢(𝑥), ∇𝑢(𝑥), ∇2𝑢(𝑥), 𝜆) = 0, 𝑥 ∈ Ω (1) 

 𝐵(𝑢, 𝑥) = 0, 𝑥 ∈ 𝜕Ω (2) 

, where 𝑥 ∈ [𝑥1, … ,  𝑥𝑛]𝑇 ∈ Ω, and Ω ⊂ R𝑛 represents the domain; 𝑢(𝑥) is the unknown solution; ∇ is 

the differential operator; 𝜆 is parameters; 𝐵(𝑢, 𝑥) gives the boundary conditions. 

The solution of the equation could be given by the combination of parameters 𝜆 and 𝑢(𝑥) which 

satisfies Eq.1 and Eq.2. It could be assumed that the 𝑢(𝑥) can be approximated by a neural network 

𝑢̂(𝑥; 𝑊, 𝑏), where 𝑊 denotes the weight matrices and 𝑏 denotes the bias in the neural network. The 

neural network’s output, which approximates the solution 𝑢(𝑥), is given by: 

 𝑢̂(𝑥; 𝑊, 𝑏) = 𝜎(𝑊(𝐿)𝜎(𝑊(𝐿−1) … 𝜎(𝑊(1)𝑥 + 𝑏1) … + 𝑏(𝐿−1)) + 𝑏(𝐿)) (3) 

, where 𝜎 is the activation function (e.g., ReLU, sigmoid), and 𝐿 is the number of layers in the neural 

network. 

To ensure that the neural network's predictions align with the PDE and its boundary conditions, a 

mean squared error (MSE) loss function will be crafted as part of the training regimen. Usually, the PDE 
and the boundary condition are represented by two terms in the loss function: 

 ℒ(𝑊, 𝑏) = ℒ𝑃𝐷𝐸 + ℒ𝐵𝐶  (4) 

The PDE loss ℒ𝑃𝐷𝐸  ensures that the network output satisfies the PDE: 

 ℒ𝑃𝐷𝐸 =
1

𝑁
∑ ||𝐹(𝑥𝑖 , 𝑢̂𝑖(𝑥𝑖; 𝑊, 𝑏), ∇𝑢̂(𝑥𝑖; 𝑊, 𝑏), ∇2𝑢̂(𝑥𝑖; 𝑊, 𝑏), 𝜆) ||2𝑁

𝑖=1  (5) 

, where 𝑥𝑖 are points sampled from the domain Ω. 

The boundary condition loss ℒ𝐵𝐶   verifies that the network's output satisfies the boundary conditions.: 

 ℒ𝐵𝐶 =
1

𝑀
∑ ||𝐵(𝑢̂(𝑥𝑗; 𝑊, 𝑏), 𝑥𝑗) ||2𝑀

𝑗=1  (6) 
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, where 𝑥𝑗  are points sampled from the boundary 𝜕Ω. 

In actual use, the formula of the loss function can also be appropriately adjusted based on the 

information obtained from the initial data. 

2.1.  Data-driven methods 

Data-driven approaches to solving differential equations involve directly applying large datasets to train 

neural networks. These datasets usually consist of input-output pairs, where the input includes 
information such as initial or boundary values, and the output is the corresponding solution to the 

differential equation. This methodology does not directly integrate the intrinsic physical laws to the 

system, but rather relies solely on the network’s ability to learn the mapping between inputs and 

solutions from data. 

2.1.1.  Training data generation. In many cases, the training data for data-driven methods is generated 

synthetically using traditional numerical methods. For a given particular PDE, numerical solvers like 

finite difference methods can be employed to produce solutions corresponding to different initial and 
boundary conditions. Noise can be added to these solutions to enhance the model’s robustness and 

generalization [6]. These synthetic datasets serve as the “ground truth” for training the model. The 

dataset typically consists of pairs where 𝑥𝑖, 𝑢𝑖, where 𝑥𝑖  represents the input conditions (such as spatial 

coordinates or initial values), and 𝑢𝑖 represents the corresponding solution values.  The model is then 

trained for minimizing the error between its predictions and these known solutions.  

2.1.2.  Neural network architecture. During solving differential equations, neural network architectures 

can be designed to handle either continuous- or discrete-time models [7]. The choice between these two 
approaches depends on the problem 's characteristics, the data available, and the desired outcome.  

2.1.3.  Continuous-time models. This model represents the system’s dynamics as a function of 

continuous variables, such as space and time.  In these models, differential equations are defined over a 
continuous domain, and the solution is typically sought as a continuous function.  

In continuous-time models, the neural network is designed to approximate a continuous function that 

satisfies the differential equation across the entire domain.  The network typically takes continuous input 

variables (e.g., time 𝑡 and spatial coordinates 𝑥) and outputs the predicted solution 𝑢(𝑡, 𝑥).  For instance, 
a feedforward network in a continuous-time model might take the following form: 

 𝑢̂(𝑡, 𝑥; 𝑊, 𝑏) = 𝜎3[𝑊(3)𝑇
𝜎2[𝑊(2)𝑇

𝜎1[𝑊(1)𝑇
(𝑡

𝑥
) + 𝑏(1)] + 𝑏(2)] + 𝑏(3)] (7) 

The network outputs the continuous function 𝑢̂(𝑡, 𝑥) , which approximates the solution to the 

differential equation. 

2.1.4.  Discrete-time models. Discrete-time models represent the system’s behavior at specific time steps. 
The differential equations are discretized, and the solution is computed at discrete intervals. This 

approach is often used when the system evolves over time in distinct steps, or when data is available 

only at certain time points.  

In discrete-time models, is engineered to predict the system's state at the subsequent time step, based 
on its current state.  This type of architecture often involves recurrent neural networks (RNNs) or other 

temporal models that can capture the dynamics over time.  For example, in a discrete-time setting, a 

feedforward network might take the form: 

 𝑢̂𝑛+1 = 𝜎2[𝑊(2)𝑇
𝜎1[𝑊(1)𝑇

𝑢̂𝑛 + 𝑏(1)] + 𝑏(2)] (8) 

, where 𝑢̂𝑛  represents  the system’s state at the current step n; 𝑢̂𝑛+1 is the network predicts for the state 

at the n + 1 step. 
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2.2.  Physics-driven methods 

Physics-Informed Neural Networks (PINNs) have become a potent instrument in the field of physics-

based differential equation solving techniques. [8]. Unlike traditional approaches that require extensive 

data or purely numerical solutions, PINNs incorporate the physical rules during training procedure 
directly. 

PINNs can solve forward problems, which means it can predict the future state of a system given 

initial and boundary conditions, and inverse problems, where the aim is to infer unknown parameters or 
functions within the PDEs [9]. 

2.2.1.  Introduction of PINN. PINN leverages models to estimate the PDEs’ solution while 

simultaneously satisfying the physical constraints of the equations. The structure of a PINN integrates 

both the data and the physics into the learning process. As shown in Figure 1, the key components of 
PINN include the neural network architecture, different loss components (data, PDE, boundary 

conditions, and initial conditions), and the overall loss.  

2.2.2.  Neural network architecture. In a typical PINN, the model is designed to take the spatial 

coordinates 𝑥  and time 𝑡  as inputs and produce the corresponding solution 𝑢̂(𝑡, 𝑥)  as output, as 

demonstrated in Figure 1. The network’s output 𝑢̂ is then utilized to determine the various loss function 

components that direct the network's training. The model is made up of multiple layers, with each layer 

applying both linear and nonlinear activation functions. The network’s architecture can vary in depth 
and width depending on the complexity of the problem. 

 

Figure 1. Representative structure of a feedforward neural network for PINN (Figure Credits: Original). 

There are four losses: (1) Data Loss ℒ𝑑𝑎𝑡𝑎: This term represents the MSE between the network’s 

predictions and any available observational or experimental data.  It ensures the output of network aligns 

with known data points. (2) PDE Loss ℒ𝑃𝐷𝐸 :  This term enforces the governing PDE across the domain.  

It is computed by evaluating the residuals of the PDE at a set of collocation points. The network is 

trained to minimize these residuals, thereby ensuring that the solution satisfies the PDE. (3) Boundary 

Condition Loss ℒ𝐵𝐶 : This term guarantees that the network's output conforms to the boundary conditions.  
It penalizes deviations from the boundary conditions at the boundary points. (4) Initial Condition Loss 

ℒ𝐼𝐶 : For time-dependent problems, this component ensures that the network's forecasts are in accordance 

with the initial conditions at the simulation's commencement. 

2.2.3.  Training process. The ability of PINNs to compute the required derivatives for the PDE residuals 
through automatic differentiation is one of its main advantages. This technique allows the model to 

efficiently calculate gradients with respect to the input variables, which are crucial for minimizing the 

PDE loss. 

The training involves optimizing the neural network’s parameters to minimize the total loss ℒ.  This 

is typically done using gradient descent-based optimization algorithms, such as the Adam optimizer. To 
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guarantee the anticipated solution fulfills the data, PDE, boundary conditions, and initial conditions, the 

network modifies its parameters throughout training in order to minimize the loss. 

2.3.  Hybrid-driven methods 

These methods represent a synergistic model that unifies the advantages of both data-driven and physics-
driven (specifically, PINN-based) methodologies. These methods aim to leverage the power of data 

where it is abundant and reliable while ensuring that the solutions respect the underlying physical laws 

of the system.  In many practical scenarios, there is a mixture of available data and known physical laws, 
but neither alone is sufficient to produce a robust solution. Hybrid-driven methods address this by 

blending the two approaches, ensuring that the neural network solutions are both accurate with respect 

to data and consistent with physical principles. 

2.3.1.  Network architecture. In hybrid-driven methods, the neural network architecture can be designed 
to accommodate both data-driven and physics-driven components.  One common approach is to have a 

single neural network that outputs the solution 𝑢̂(𝑡, 𝑥), which is then subject to both a data- and physics-

based loss. 
Alternatively, the architecture might involve separate subnetworks—one for modeling the data-

driven aspects and another for enforcing the physics. These subnetworks could then be combined at a 

later stage in the architecture to produce the final solution 

2.3.2.  Training process. The loss function in hybrid-driven methods typically combines both data- and 

physics-driven terms.  The loss function can be normally described as:  

 ℒ(𝑊, 𝑏) = 𝛼ℒ𝑑𝑎𝑡𝑎 + 𝛽ℒ𝑃𝐷𝐸 + 𝛾ℒ𝐵𝐶 + 𝛿ℒ𝐼𝐶  (9) 

, where ℒ𝑑𝑎𝑡𝑎, ℒ𝑃𝐷𝐸 , ℒ𝐵𝐶  and ℒ𝐼𝐶  are mentioned before in Section 2.2.2.  For parameters 𝛼, 𝛽, 𝛾, 𝛿 they 
are weighting factors that balance the contributions of the different loss components.  These weights can 

be adjusted based on the relative confidence in the data versus the physical model, or they can be learned 

as part of the training process. 
Another implementation strategy is to use physics-based simulations to augment the training data. 

When empirical data is limited, simulations based on known physics can generate additional data points, 

which the neural network can use for training. This augmented data helps improve the network’s 

performance and ensures that the derived solution aligns with the principles of physics. 

3.  Discussion 

The application of solving differential equations leveraging neural networks marks a significant 

advancement in both numerical analysis and machine learning.  Each of the approaches discussed—
data-driven methods, physics-driven methods (with a focus on PINNs), and hybrid-driven methods—

offers distinct advantages and presents unique challenges. 

3.1.  Data-driven methods 

These methods perform very well when there is enough high-quality data available to begin with. These 
methods allow neural networks to learn complex mappings directly from the data, often achieving high 

accuracy in the domain covered by the training data.  As Berg and Nyström demonstrate, high-quality 

data allows data-driven methods to accurately discover and model complex physical processes using 
neural networks [10].  Their work illustrates that with the right data and model selection, even com- plex 

PDEs can be effectively reverse-engineered, leading to highly accurate simulations. However, data-

driven methods face significant challenges when extrapolating beyond the training set because they do 
not enforce the laws of physics themselves. Rudy et al. highlight a significant limitation of data-driven 

neural networks in the presence of noise [11]. They demonstrate that while neural networks can 

accurately identify the correct terms in a complex PDE like the Kuramoto-Sivashinsky equation, noise 

introduces substantial errors in the coefficients. This underlines the sensitivity of data-driven methods 
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to noise, which can lead to significant inaccuracies in the learned models, especially when numerical 

differentiation is involved. 

3.2.  PINNs 

PINNs directly include physical laws during training, hence addressing some of the main drawbacks of 
data-driven techniques.  PINNs guarantee that the solutions comply with the underlying physics by 

minimizing the residuals of the PDEs, boundary conditions, and beginning conditions.  This makes them 

particularly powerful in scenarios where data is limited or when it is crucial to maintain physical 
consistency [12].  However, PINNs can be computationally expensive and may encounter difficulties 

with optimization due to the complex loss landscapes they generate [13]. 

3.3.  Hybrid-driven methods 

Hybrid methods strike a balance, leveraging the advantages of both data- and physics-driven strategies.  
By integrating data with physical constraints, these methods can achieve high accuracy while ensuring 

that the solutions respect the underlying physical laws.  Hybrid methods are especially useful in real-

world applications where both data and physics are available but neither alone is sufficient.  The main 
challenges with hybrid methods include the complexity of designing and training the models, as well as 

the need to balance the contributions of data-driven and physics-driven components in the loss function. 

4.  Conclusion 
Neural networks have introduced a transformative approach to solving differential equations, offering 

methods that synergize traditional numerical techniques with advanced machine learning capabilities. 

This study examined three primary approaches:  data-driven methods, physics-driven methods 

(specifically Physics-Informed Neural Networks, or PINNs), and hybrid- driven methods. Data-driven 
methods are highly effective in scenarios where extensive datasets are available, llowing neural 

networks to acquire intricate relationships from the data. However, these methods often face challenges 

in generalization and may produce solutions that lack physical consistency when applied beyond the 
scope of the training data. Physics-driven techniques, especially PINNs, overcome constraints by 

incorporating the fundamental physical laws directly into the neural network's loss. This merging 

guarantees that the solutions produced by the network are not just consistent with the data but also 

comply with the foundational physical principles. While PINNs are particularly well-suited for problems 
with sparse data or where physical accuracy is paramount, they are often computationally intensive and 

can be challenging to optimize due to the complexity of the loss landscape. Hybrid-driven methods 

represent a convergence of data- and physics-driven approaches, exploiting both their strengths.  By 
combining empirical data with physical constraints, these methods achieve enhanced accuracy and 

generalization, making them especially suitable for complex real-world applications where both data 

and physics are integral. 
Future research directions are likely to focus on improving the scalability and efficiency of these 

methods, integrating them with traditional numerical approaches, and incorporating uncertainty 

quantification.  Additionally, extending these methodologies to emerging interdisciplinary domains and 

enhancing the interpretability of neural network models will be critical for their broader adoption. 
In conclusion, neural networks provide a robust and versatile framework for solving differential 

equations, with each approach—data-driven, physics- driven, and hybrid-driven—offering distinct 

advantages.  It is anticipated that these approaches will become more and more important as they 
advance in solving challenging problems in a variety of technical domains. 
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