
 

 

Comparative Analysis of Machine Learning Methods in the 

Detection of Network Intrusion 

Kaixin Chen 

Fudan University, 220 Handan Rd., Shanghai, China 

22307130353@m.fudan.edu.cn 

Abstract. In the context of increasing network security threats, traditional Intrusion Detection 

Systems (IDS) face challenges in detecting complex and evolving attacks. This paper presents a 

comparative study of three machine learning algorithms—Logistic Regression, Naive Bayes, and 

Multilayer Perceptron (MLP)—for network intrusion detection. Using a comprehensive dataset, 

the performance of these models is evaluated based on metrics such as accuracy, precision, recall, 

and F1 score. Results show that MLP with two hidden layers significantly outperforms other 

models, achieving high accuracy and robustness in detecting both normal and anomalous 

network traffic. The study highlights the limitations of traditional models in handling nonlinear 

and complex features, while also emphasizing the potential of advanced machine learning 

techniques to improve detection performance. Future research directions include optimizing 

model complexity, reducing false positives, and integrating deep learning architectures for 

enhanced real-time intrusion detection. 

Keywords: Machine Learning, Network Intrusion, logistic regression, Naive Bayes, Multilayer 

Perceptron. 

1.  Introduction 

In the digital society, the importance of network security cannot be overlooked. As the internet continues 

to penetrate every aspect of our daily lives, network intrusion has become an increasingly serious threat. 

Especially in the era of big data, the explosive growth of internet-connected devices, including IoT 

devices, online payment systems, and cloud computing platforms, has made the network environment 

more complex, thus increasing the difficulty of intrusion detection. IoT devices, which are widely used 

in smart homes, medical devices, and industrial control systems, are often vulnerable due to weak 

security protections. At the same time, cybercriminals use efficient and stealthy techniques to steal 

personal information, corporate data, and government secrets on a large scale, causing immeasurable 

economic losses and social impact. 

In the field of network security, intrusion detection systems (IDS) play a critical role [1]. They are 

used to monitor network traffic, identify potential threats, and prevent attacks. However, traditional IDS 

methods largely rely on rule-based and signature-based approaches, which are designed to detect threats 

using predefined rules and known attack patterns. While these feature-matching techniques perform well 

in identifying known attacks, they struggle to handle increasingly complex and diverse attack methods. 

First, attackers continuously develop new techniques, such as zero-day attacks and Advanced Persistent 

Threats, which do not have known signatures or patterns. This makes it difficult for traditional IDS to 
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update rule sets in time to detect these new threats. Additionally, traditional IDS often lack the ability 

to detect abnormal behaviors, making it hard to identify network activities that appear normal but are 

actually malicious. In large-scale network environments, manual rule-based detection is insufficient for 

processing vast amounts of data in real time, reducing the accuracy and response time of intrusion 

detection. Traditional IDS also suffer from high false alarm rates. Due to the rigid and static nature of 

detection rules, these systems often mistakenly flag normal network activities as anomalies, leading to 

a large number of false positives. Maintaining and updating rule sets also require significant time and 

human resources, making it difficult to adapt to rapidly evolving attack techniques. As a result, 

traditional intrusion detection methods struggle to perform effectively against modern, evolving attack 

patterns, exposing significant gaps in network security defenses. 

With the rapid development of artificial intelligence, machine learning has emerged as a powerful 

tool to address the challenges of network intrusion detection. Unlike traditional rule-based methods, 

machine learning models are data-driven. They can be trained on large historical datasets to 

autonomously learn normal patterns of network traffic and identify potential abnormal behaviors. In the 

context of big data, machine learning is capable of processing and analyzing vast amounts of network 

data efficiently, uncovering attack patterns hidden in noise, and thus effectively identifying unknown 

threats. Compared to traditional methods, machine learning-based network intrusion detection offers 

significant advantages. Machine learning-driven IDS systems can achieve a balance between real-time 

processing and accuracy, making them especially suitable for today’s complex and rapidly changing 

network environments. 

This paper aims to evaluate and analyze the application of several common machine learning 

methods in network intrusion detection. Through experimental comparisons of different algorithms’ 

performance, we will explore their applicability and limitations in real-world network environments. 

The research presented in this paper not only provides valuable insights for academic studies in the field 

of network security but also offers practical, intelligent solutions for deploying intrusion detection 

systems. 

2.  Previous works  

With the rapid development of information technology, network security threats are increasing, and IDS 

play a critical role in network defense. Traditional intrusion detection methods mainly include signature-

based detection, state-based detection, and content-based detection. Each method has its strengths, but 

they also reveal limitations when faced with complex network environments and large-scale data 

processing. 

Signature-based detection is the most commonly used method for intrusion detection [2]. It identifies 

intrusion behaviors by matching known attack signatures. This approach is highly accurate and has a 

low false-positive rate, performing well against known threats. However, it relies on constant updates 

to the signature database, making it less effective against new types of attacks, such as zero-day attacks. 

Additionally, maintaining the signature database requires substantial resources. As attack techniques 

evolve, signature-based detection gradually fails to meet the growing demands. 

State-based detection identifies attacks by monitoring changes in network connection states [3]. It is 

particularly effective for detecting complex attack behaviors, such as session hijacking. Compared to 

signature-based detection, it has advantages in recognizing more sophisticated attacks. However, the 

downside is its computational complexity and high resource consumption. In high-traffic networks, this 

method can lead to decreased system performance and demands significant hardware resources. 

Content-based detection analyzes packet content to identify potential threats [3]. It is effective in 

detecting hidden attacks like SQL injection. However, in-depth packet analysis consumes a large amount 

of computing resources, and its effectiveness significantly decreases when dealing with encrypted traffic. 

Thus, in high-traffic or encrypted network environments, the limitations of this method become evident. 

Overall, while these traditional methods are effective in certain scenarios, their limitations become 

more apparent as attack techniques diversify and network environments become more complex. As a 
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result, machine learning methods have emerged as a critical direction for intrusion detection, offering 

more flexible and intelligent solutions. 

3.  Dataset and Preprocessing 

 

Figure 1. The proportion of samples. 

The dataset used in this study is a comprehensive intrusion detection dataset generated in a simulated 

military network environment (Network Intrusion Detection Dataset in Kaggle). This simulated 

environment closely resembles real operational scenarios and includes various types of attacks to 

produce diverse intrusion detection data. There are 25192 records, including 53.4% normal records and 

46.6% anormal records. Each connection is defined as a series of TCP packets transmitted from a source 

IP address to a target IP address over a specific protocol during a certain time period. Each connection 

is clearly labeled as either "normal" or "anomalous," with anomalous connections further categorized 

by specific attack types. Each connection record consists of approximately 100 bytes of data. For each 

TCP/IP connection, the dataset provides 41 features, including 3 qualitative and 38 quantitative features, 

used to describe both normal and attack behaviors. The target variable is divided into two classes: normal 

and anomalous. 

In the data processing steps, we first performed comprehensive data cleaning, removing duplicate 

packets that could cause model overfitting. Missing values were handled using interpolation or mean 

imputation to ensure data integrity. Next, we extracted key features from each packet, such as source IP 

address, destination IP address, port number, and protocol type. For feature processing, we standardized 

the numerical features by applying min-max scaling, which normalized the data to the [0,1] range. 

Categorical features were converted into numerical form using one-hot encoding. To improve 

computational efficiency and reduce model complexity, we applied feature selection techniques. 

Through correlation analysis and dimensionality reduction methods, such as PCA, we retained the 

features most relevant to network attack behavior. Finally, the dataset was split into training and testing 

sets, with 70% used for training and 30% for testing. The processed data was then serialized and saved 

in a format suitable for machine learning model input. 

4.  Comparative Methods 

In the context of Network Intrusion Detection Systems, selecting an appropriate machine learning 

algorithm is crucial as it directly impacts the system's accuracy, detection efficiency, and false alarm 

rate. This study provides a detailed comparison of three classic machine learning algorithms—Logistic 
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Regression, Naive Bayes, and Multilayer Perceptron (MLP)—aiming to offer algorithm selection and 

optimization recommendations tailored to specific network security threat scenarios. 

Naive Bayes is a simple probabilistic classifier based on Bayes' theorem, which assumes that features 

are conditionally independent given the class [4]. Although this assumption simplifies the computation, 

it is also a major theoretical limitation of Naive Bayes, as features in real-world data are often 

interdependent. The algorithm performs well on low-dimensional datasets but may suffer in scenarios 

where high-dimensional features are correlated. Despite this, Naive Bayes is widely used in real-time 

intrusion detection due to its simplicity and computational efficiency. Theoretically, Naive Bayes is 

suitable for large-scale data processing, especially when features are relatively independent. However, 

its sensitivity to class imbalance may pose challenges in practical applications, particularly when attack 

samples are scarce in the dataset. 

MLP is a complex feedforward neural network capable of learning intricate data patterns through 

multiple layers of nonlinear transformations [5]. The structure of an MLP consists of an input layer, one 

or more hidden layers, and an output layer, with each layer comprising multiple neurons. Each neuron 

transforms its input signal using an activation function such as ReLU or Sigmoid. The theoretical 

foundation of MLP allows it to increase model complexity by adding depth and width to the hidden 

layers, enhancing its ability to learn nonlinear relationships in the data. However, MLP's performance 

is highly dependent on the configuration of the network architecture and hyperparameters, such as 

learning rate and batch size, which need to be optimized through methods like cross-validation. 

Furthermore, MLP may require substantial computational resources during training, especially on large 

datasets, leading to longer training times and increased resource consumption. 

Logistic Regression is a statistical classification method that seeks to find a linear decision boundary 

in the feature space to distinguish between different classes. It predicts a probability by applying the 

Sigmoid function to map the output of linear regression to the [0,1] range. Theoretically, Logistic 

Regression performs best when there is a linear relationship between the features and the target outcome. 

Its main advantages are simplicity and high interpretability, making it particularly suitable for scenarios 

where quick implementation is necessary. Parameter estimation in Logistic Regression typically uses 

the maximum likelihood estimation method. Although this method can be computationally intensive, it 

provides stable classification results. However, the limitations of Logistic Regression in handling 

nonlinear data are evident, which can be a drawback in complex network security environments. 

5.  Results 

We conducted experiments comparing the performance of four models—Logistic Regression, Naive 

Bayes, Multilayer Perceptron 1 (MLP1, with one hidden layer containing 10 neurons), and Multilayer 

Perceptron 2 (MLP2, with two hidden layers, each containing 30 neurons)—across several key 

performance metrics, including accuracy, F1 score, precision, and recall. The results are summarized in 

Table 1 and Figure 2. 

Table 1. Metrics for different methods. 

Model Accuracy F1-Score Precision Recall 

LGR 0.95 0.96 0.95 0.97 

Naïve Bayes 0.90 0.92 0.88 0.95 

MLP1 0.96 0.96 0.94 0.99 

MLP2 0.98 0.99 0.99 0.99 

 

Logistic regression demonstrated balanced performance across all evaluation metrics, with an 

accuracy of 0.95, an F1 score of 0.96, and precision and recall of 0.95 and 0.97, respectively. This 

indicates that the logistic regression model can achieve high precision while maintaining a high recall 

rate, effectively distinguishing between normal and abnormal traffic. However, as a linear model, its 
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ability to handle complex nonlinear features is limited, which may restrict its performance in certain 

data patterns. 

The Naive Bayes model achieved an accuracy of 0.90 in this test, slightly lower than that of Logistic 

Regression, but with an F1 score of 0.92, indicating strong classification capabilities. Notably, the recall 

rate was as high as 0.95, suggesting that it effectively captured most network intrusion events. However, 

due to the assumption of feature independence, Naive Bayes may not perform well when dealing with 

complex or highly correlated features, as reflected in its precision of 0.88 and relatively high false 

positive rate. 

 

Figure 2. ROC for different methods. 

MLP1 excelled in recall, achieving an almost perfect score of 0.99, meaning it detected nearly all 

attack behaviors. With an accuracy of 0.96, MLP1 outperformed Logistic Regression, though its 

precision of 0.94 could point to a higher false positive rate in some cases. Nonetheless, MLP1, with its 

nonlinear modeling capabilities, effectively handled the complexity of network data. MLP2 

outperformed all other models, with an accuracy of 0.98 and F1 score, precision, and recall all reaching 

0.99. This exceptional performance indicates that MLP2 is highly robust and excels at classifying large 

and complex datasets, accurately identifying both normal and abnormal traffic. 

In summary, MLP2 significantly outperformed the other models in this experiment, thanks to its 

complex multilayer structure and nonlinear processing capabilities. While Naive Bayes performed well 

in recall, it suffered from a higher false positive rate, and Logistic Regression exhibited balanced 

performance in most scenarios. The MLP models, particularly MLP2, showed greater potential due to 

their ability to capture nonlinear patterns in complex data, achieving near-perfect balance between 

precision and recall. Additionally, hyperparameter tuning and model complexity were critical factors 

affecting performance, especially for the MLP models. 

6.  Conclusion 

In this study, we conducted a detailed comparative analysis of Naive Bayes, Logistic Regression, and 

MLP models to assess their effectiveness in detecting network attacks. Through a comprehensive 

evaluation of these models, we identified several key findings. 

First, there were significant performance differences among the models. The MLP2 model performed 

best across all metrics, particularly in handling complex data features and large datasets. It achieved 
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exceptionally high accuracy, F1 score, precision, and recall, nearly reaching perfect classification. This 

superior performance is due to its complex network structure, which effectively captures nonlinear 

relationships in the data, making it particularly suited for analyzing multidimensional features and 

detecting abnormal behavior patterns in network intrusion detection. In contrast, while Logistic 

Regression is a linear model, it still provides high classification performance in simpler or linearly 

separable tasks, making it ideal for scenarios where resources are limited and rapid deployment is 

required. Naive Bayes, though efficient in computation, is limited by its independence assumption, 

which affects its performance when dealing with complex or interdependent features. While it achieved 

a high recall rate, its higher false positive rate reduced its overall effectiveness. 

Secondly, we observed a positive correlation between model complexity and performance. MLP2, 

the most complex model in this study, consistently outperformed others in all testing scenarios, 

demonstrating its superior ability to handle complex and nonlinear data. Simpler models like Naive 

Bayes and Logistic Regression struggled with this type of data. Lastly, hyperparameter tuning played a 

critical role in improving model performance. For the MLP2 model, adjusting the learning rate and the 

number of hidden layers significantly enhanced its adaptability to data features and its generalization 

ability, while also effectively reducing overfitting. 

Although this study provides valuable insights into the application of different machine learning 

models for network attack detection, we also identified several key limitations that need to be addressed 

in future research. First, while the MLP2 model showed outstanding performance, its high computational 

complexity led to longer training times and higher computational costs, which may limit its practicality 

in resource-constrained environments. Thus, reducing the computational complexity and training time 

without sacrificing performance is an important area for future research. Second, the dataset used in this 

study was limited in size. Although the models performed well on this dataset, the results may not 

generalize to larger real-world network environments. The use of static datasets may not fully capture 

the dynamic nature of network traffic, so future research should include larger and more dynamic 

datasets to better validate the models' practicality and robustness. 

Additionally, while MLP models exhibited strong detection capabilities, controlling the false positive 

rate remains a challenge. The relatively poor precision of the Naive Bayes and Logistic Regression 

models could reduce system efficiency in real-world applications. Future research should focus on 

optimizing model structures or introducing new false positive control strategies to mitigate the impact 

of false positives on system performance. Finally, this study primarily trained and tested models using 

batch processing, whereas real-world network intrusion detection systems require real-time detection 

capabilities. Despite the superior performance of deep learning models like MLP, their real-time 

efficiency has not yet been fully tested. Future research should focus on improving the real-time 

performance of these models, optimizing their response speed and detection efficiency to meet the real-

time demands of network environments. 

Future network intrusion detection research will focus on leveraging advanced machine learning 

techniques to address increasingly complex attack patterns and data imbalance issues. Specifically, 

Generative Adversarial Networks (GANs) [6], Transformer models [7], as well as BERT [8] and GPT 

technologies [9], will play a central role. GANs have already shown significant promise in anomaly 

detection and generating malicious traffic, with their ability to enhance the adaptability of IDS through 

the generation of realistic adversarial samples. Notably, Wasserstein GAN (WGAN) [10], by 

introducing the Earth Mover’s Distance, improves the model's stability in handling complex data 

distributions and enhances its ability to detect zero-day and unknown attacks. Conditional GAN (cGAN) 

[11] effectively addresses the data imbalance problem, proving advantageous in generating small-

sample attack data. Future research will further optimize this architecture to enhance its performance. 

Transformer models, due to their self-attention mechanism and efficiency in processing sequential data, 

have shown great potential in network intrusion detection, significantly reducing training time and 

improving model convergence. Future studies will explore optimizing Transformer’s multi-head 

attention layers and feedforward neural network layers to enhance detection of complex network attack 

behaviors. Additionally, time-aware Transformers or hierarchical Transformers could be developed to 
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address specific cybersecurity challenges. Moreover, the pre-training and fine-tuning mechanisms of 

BERT and GPT will be introduced into the field of network intrusion detection. These models capture 

contextual information from input sequences through bidirectional encoders, improving the detection of 

complex attack patterns. GPT's generative and reasoning capabilities can not only be used to generate 

anomalous traffic samples but also to automatically generate intrusion detection rules or policies, further 

enhancing detection of attacks requiring deep reasoning or long-distance dependencies. 

By integrating these advanced deep learning techniques, future network intrusion detection systems 

will become more intelligent and adaptive, effectively countering increasingly complex and diverse 

attack patterns, thus providing stronger protection for cybersecurity. 
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