

Research on Detection Methods for Text Generated by Large

Language Models Based on Multi-Model Ensemble

Liang Tian
1,3,*

, Nan Jiang
2,4

1Business-intelligence of Oriental Nations Corporation Ltd, Beijing, China
2Goodwill E-Health Info Corporation Ltd, Beijing, China

3todd841026@163.com
4nancy.gooogle@gmail.com
*corresponding author

Abstract. The rapid development of Large Language Models (LLMs) has made their generated

text almost indistinguishable from human writing, posing significant challenges to traditional

human-machine recognition techniques. This paper proposes a detection method based on multi-

model ensemble to accurately identify text generated by LLMs. Firstly, a large-scale, diverse,

and heterogeneous dataset is constructed, covering student writings and texts generated by

models such as GPT-3, GPT-2, CTRL, and XLM. Then, a multifaceted detection framework
integrating linear models, deep learning models, and pre-trained language models is designed.

The linear model utilizes an argumentative essay dataset (DAIGT V2 Train Dataset) similar in

distribution to the competition dataset, combined with adaptive BPE tokenization, N-Gram, and

TF-IDF features. It employs Multinomial Naive Bayes and SGDClassifier to train classifiers that

capture shallow statistical features of the text. The deep learning model fine-tunes the DeBERTa-

v3-small model on large-scale datasets (Pile, Ultra, Human vs. LLM Text Corpus) to learn deep

semantic representations of the text. The pre-trained language model introduces a fine-tuned

DistilRoBERTa model, enhancing detection capabilities using third-party datasets. Finally, the

above models are integrated through a weighted average strategy, significantly improving the

generalization and robustness of the detection results. Experimental results show that this method

achieved a score of 0.967466 in the Kaggle competition, earning a silver medal and
outperforming any single model. The study demonstrates the effectiveness of multi-source data

and multi-model ensemble in detecting LLM-generated text, providing new ideas and practical

references for research in this field.

Keywords: Large Language Models, text detection, heterogeneous dataset, deep learning.

1. Introduction

The rapid development of Large Language Models (LLMs) in recent years has continuously improved

the quality of text generation, posing new challenges to traditional human-machine recognition
techniques. LLMs like GPT-3 and BERT [1], through pre-training on massive corpora, can generate

fluent and coherent text that is almost indistinguishable from human writing. LLMs have achieved great

success in tasks such as text continuation, dialogue generation, and question-answering systems,

showing broad application prospects.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

59

However, the widespread application of LLMs has also brought a series of new problems. Firstly,

the high-quality text generated by LLMs makes traditional human-machine recognition methods based

on shallow features ineffective, demanding higher requirements for detection techniques. Secondly, the

misuse of LLMs in the educational field may exacerbate academic dishonesty; in the news domain, it
may accelerate the spread of misinformation, causing adverse social impacts. Therefore, accurately

identifying text generated by LLMs is of great significance for maintaining the healthy development of

content ecosystems.
Existing methods for detecting machine-generated text mainly include statistical modeling based on

shallow features and end-to-end learning based on deep neural networks [2]. The former classifies by

extracting surface features such as word frequency and n-gram distribution, having the advantages of

strong interpretability and high computational efficiency but limited discrimination ability for high-
quality text generated by LLMs [2]. The latter uses pre-trained language models like RoBERTa and

ELECTRA, detecting machine-generated text by fine-tuning on downstream tasks, achieving good

results on multiple datasets [3]. However, existing work mainly focuses on specific models or datasets,
lacking comprehensive examination of different LLMs, genres, and topics, and rarely involves the fusion

and integration of multiple techniques.

To solve the above problems and promote the development of detection technology for text generated
by LLMs, this paper proposes a detection method based on multi-model ensemble. Our main

contributions are as follows:

 Constructing a large-scale, diverse, and heterogeneous dataset: The dataset includes student

writings and texts generated by various LLMs (such as GPT-3, GPT-2, CTRL, XLM), surpassing

existing work in scale and diversity, providing rich data support for model training and evaluation.

 Designing a multifaceted detection framework integrating linear models, deep learning models,

and pre-trained models: This framework characterizes the features of LLM texts from both shallow

language patterns and deep semantics, improving detection accuracy and generalization ability.

 Introducing cross-domain corpora to fine-tune pre-trained models and performing model

integration: By fine-tuning pre-trained models on large-scale cross-domain corpora and integrating
multiple heterogeneous models using weighted averaging, the generalization and robustness of

detection results are significantly improved.

 Achieving excellent experimental results: Our method achieved a score of 0.967466 in the Kaggle

competition, earning a silver medal and outperforming any single model, providing new ideas and
practical references for the task of detecting LLM-generated text.

The structure of this paper is arranged as follows: Section 2 introduces related work, Section 3

describes the detection methods in detail, Section 4 reports experimental results and analysis, and

Section 5 summarizes the full text and prospects future research directions.

2. Related Work

Existing methods for detecting machine-generated text mainly fall into two categories: statistical

modeling based on shallow features and end-to-end learning based on deep neural networks.

2.1. Statistical Modeling Based on Shallow Features

Early detection methods mainly relied on shallow text features. Hunter and Dale used Unix command-

line tools to detect software-generated fake reviews by analyzing surface patterns such as sentence

length and function word usage. Lavergne et al. statistically analyzed word transition probability
matrices and trained Support Vector Machine (SVM) models to identify machine-written scientific

papers. Uchendu et al. [2] designed a multivariate method integrating six types of linguistic features

(e.g., word frequency, readability), achieving good results on Yelp and Amazon review datasets.
However, these methods based on manual feature engineering are difficult to characterize the deep

patterns of text generated by LLMs and have limited discrimination ability for high-quality AI-generated

text.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

60

2.2. End-to-End Learning Based on Deep Neural Networks

With the development of pre-trained language models, deep learning methods have gradually become

the mainstream for detecting machine-generated text. Zellers et al. [3] proposed the Grover framework,

using generative-discriminative adversarial networks to detect fake news, achieving 89.2% accuracy on
the RealNews dataset. Bhat et al. improved the adversarial training method based on RoBERTa,

introducing Bayesian optimization to automatically adjust hyperparameters, increasing the F1 score on

the GLTR dataset to 95.2%. Zhong et al. designed a zero-shot detection method using the latent space
differences of GPT-2, which can discriminate text generated by the model without training, achieving

results superior to traditional methods on multiple open-source datasets. However, existing work mainly

focuses on specific models or datasets, lacking comprehensive examination of different LLMs, genres,

and topics, and rarely involves the fusion and integration of multiple techniques.

2.3. Innovations of This Study

To address the above issues, this paper proposes a detection method for LLM-generated text based on

multi-model ensemble. Compared with existing work, our main innovations are:

 Constructing a large-scale, diverse heterogeneous dataset: Introducing multiple datasets such as

DAIGT V2 [4], Pile [5], Ultra, and Human vs. LLM Text Corpus [6], covering student writings and

texts generated by various LLMs, surpassing existing research in scale and diversity.

 Integrating multiple models in a detection framework: Designing a multifaceted detection

framework that integrates linear models, deep learning models, and pre-trained language models,
characterizing the features of LLM texts from both shallow statistical features and deep semantic

representations.

 Improving the generalization and robustness of the model: By fine-tuning pre-trained models on

large-scale cross-domain corpora and integrating multiple heterogeneous models using weighted

averaging, the generalization and robustness of detection results are significantly improved.

3. Methodology

This section will detail the proposed detection method for LLM-generated text based on multi-model

ensemble. Figure 1 illustrates the overall research idea and technical route. We first construct a
heterogeneous dataset containing student writings and texts generated by various LLMs. Then, we

design linear classification models, deep learning models, and pre-trained language models based on

shallow features and deep semantics, respectively. Finally, we achieve the fusion of different models
through weighted averaging.

Figure 1. Architecture of Large Language Model Generated Text Detection Method Based on Multi-

Model Ensemble

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

61

3.1. Construction of Heterogeneous Dataset

To enhance the generalization ability of the model, we constructed a heterogeneous dataset containing

student writings and texts generated by various LLMs. The dataset sources include:

 Kaggle Competition Dataset: Contains 1,378 English texts, of which 1,375 are student writings and

3 are LLM-generated.

 DAIGT V2 Training Set: DAIGT V2 Train Dataset [4] includes argumentative essays written by

students and articles generated by different LLMs (e.g., GPT-2, CTRL, XLM), totaling about 50,000

pieces. We used t-SNE dimensionality reduction visualization to analyze the distribution structure of

these samples, intuitively showing the differences between student writings and LLM-generated texts.

Figure 2. Visualization of DAIGT V2 Train Dataset(t-SNE Dimentionality Reduction)

 Pile and Ultra Datasets: Pile and Ultra Pile [5] is a large-scale multi-domain English corpus,

including texts from books, GitHub code, web pages, and more. Ultra is a multi-turn dialogue dataset

from Tsinghua University, generating natural and fluent dialogue texts from multiple ChatGPT
models. We extracted human-written texts and LLM-generated texts from them, enriching the scale

of the dataset.

 Human vs. LLM Text Corpus: Human vs. LLM Text Corpus [6] contains human-written texts and

LLM-generated texts, covering various topics.

To ensure data quality, we performed the following processing:

 Data Cleaning: Normalized punctuation, corrected spelling errors, and removed redundant

information from all texts [7].

 Length Filtering: Removed texts that were too short (less than 100 words) or too long (more than

1,000 words).

 Deduplication: Used TF-IDF and cosine similarity to filter near-duplicate texts with similarity

exceeding 0.92.

 Data Splitting: Employed stratified sampling to split the data into training and validation sets at an

8:2 ratio, ensuring consistent distribution of various texts in different subsets.

3.2. Linear Classification Model Based on Shallow Features

3.2.1. Text Preprocessing and Adaptive Tokenization
To capture the shallow statistical features of the text, we needed to tokenize the text. Due to vocabulary

differences from different text sources, we did not directly use a general tokenizer but adaptively trained

a BPE (Byte-Pair Encoding) tokenizer [7] based on the training and validation texts. The specific steps
are:

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

62

 Training a Custom Tokenizer:

o Data Source: Used text data from the training and validation sets to ensure the tokenizer

adapts to the data distribution the model will process.

o Tokenizer Settings: Adopted the BPE algorithm with a vocabulary size set to 5,000 to capture

common words and phrases.

 Tokenization Processing:

o Unified Tokenization: Used the trained tokenizer to tokenize all texts in the training set,

validation set, and test set, ensuring vocabulary consistency and obtaining unified sequence

representations.
o Vocabulary Coverage: Since the tokenizer is trained based on the training and validation sets,

it may encounter unseen words in the test set. The BPE tokenizer can effectively handle this

situation by breaking unknown words into known subwords or characters.

3.2.2. Feature Representation Based on TF-IDF
Based on tokenization, we extracted N-Gram features of the text, specifically 3-gram to 5-gram. Then,

we calculated the TF-IDF values of these N-Grams to obtain feature vectors for each text. TF-IDF can

measure the importance of words in the text, helping to capture statistical features of the text.

3.2.3. Training of Linear Classifiers

We used two linear models, Multinomial Naive Bayes and SGDClassifier, for training:

 Multinomial Naive Bayes: Suitable for multinomial distributions, performs well on high-

dimensional sparse data.

 SGDClassifier: A linear classifier optimized using Stochastic Gradient Descent (SGD), allowing for

different loss functions (e.g., hinge loss corresponds to linear SVM, log loss corresponds to logistic

regression).

Training Steps:

 Similarity Filtering: Filtered out highly repetitive data (similarity greater than 0.92) based on cosine

similarity to ensure data diversity.

 Feature Extraction: Tokenized texts using the custom tokenizer and extracted N-Gram TF-IDF

features.

 Model Training: Input the above features into MultinomialNB and SGDClassifier to build an

ensemble classifier for training.

 Model Prediction: Made predictions on the dataset to obtain results.

3.3. Pre-trained Models Based on Deep Learning

3.3.1. Fine-tuning the DeBERTa Model

To capture deep semantic features of the text, we chose the DeBERTa-v3-small pre-trained model [8]

and fine-tuned it using large-scale datasets:

 Data Preparation:

o Data Collection: Collected a large amount of human-written texts and LLM-generated texts

from Pile [5], Ultra datasets, and open-source datasets like Human vs. LLM Text Corpus [6].

o Data Processing: Performed simple preprocessing on the large-scale data to construct a binary

classification dataset for fine-tuning.

 Model Fine-tuning: Input the processed data into the DeBERTa-v3-small model for fine-tuning on

the binary classification task to obtain optimized model weights.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

63

 Model Inference: Used the fine-tuned model to make predictions on the Kaggle competition dataset,

generating results.

3.3.2. Introducing the DistilRoBERTa Model

We also introduced the open-source DistilRoBERTa model [9], fine-tuning it using third-party datasets

to enhance detection capabilities. The specific steps are:

 Model Fine-tuning: Fine-tuned the DistilRoBERTa model [9] using third-party datasets.

 Model Prediction: Used the fine-tuned model to make predictions on the Kaggle competition dataset,

obtaining results.

3.4. Model Ensemble and Prediction

To fully utilize the advantages of different models, we integrated the prediction results of the three
models. The detailed methods and formulas for model ensemble are as follows.

3.4.1. Standardization of Prediction Results

Since the output ranges and scales of different models may differ, we first standardized the prediction

scores of each model to ensure they are fused on the same scale. We adopted Rank Scaling, mapping
each model's prediction scores to the [0, 1] interval.

For model 𝑀𝑖(𝑖 = 1, 2, 3), its prediction score for sample 𝑥𝑗 is 𝑠𝑖(𝑥𝑗). We performed ascending

sorting on all prediction scores of model 𝑀𝑖 to obtain the rank 𝑟𝑖(𝑥𝑗) . Then, we calculated the

standardized score �̂�𝑖(𝑥𝑗):

�̂�𝑖(𝑥𝑗) =
𝑟𝑖(𝑥𝑗) − 1

𝑁 − 1

where N is the total number of samples in the test set, and 𝑟𝑖(𝑥𝑗) is the rank of sample 𝑥𝑗 in the sorted

prediction scores of model 𝑀𝑖 .

3.4.2. Weighted Fusion
After obtaining the standardized prediction scores of each model, we fused the model's prediction results

through a weighted average strategy to obtain the final prediction probability. Set the weight of each

model as 𝑤𝑖, satisfying ∑ 𝑤𝑖 = 1
3

𝑖=1
. Then, for sample 𝑥𝑗 , the final prediction probability

𝑃(𝑦 = 1 | 𝑥𝑗) is calculated as:

𝑃(𝑦 = 1 | 𝑥𝑗) = ∑ 𝑤𝑖 �̂�𝑖(𝑥𝑗)

3

𝑖=1

where:

 �̂�𝑖(𝑥𝑗) is the standardized prediction score of model 𝑀𝑖 for sample 𝑥𝑗 .

 𝑤𝑖 is the weight of model 𝑀𝑖, reflecting the importance of the model in the fusion.

3.4.3. Determining Weights

To determine the optimal weights wiw_iwi of each model, we performed tuning on the validation set.
The specific steps are:

 Initializing Weight Range: Set the initial range of weights 𝑤𝑖 to [0, 1], satisfying ∑ 𝑤𝑖 = 1
3

𝑖=1
.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

64

 Grid Search/Bayesian Optimization: Used grid search or Bayesian optimization methods to

traverse possible weight combinations, calculating the model's performance on the validation set for

each set of weights.

 Selecting Optimal Weights: Chose the weight combination (𝑤
1
∗, 𝑤

2
∗, 𝑤

3
∗) that achieved the best

performance on the validation set.

3.4.4. Summary of Model Ensemble Algorithm

In summary, the algorithm flow of model ensemble is:

1. Obtaining Prediction Scores of Each Model: For each sample 𝑥𝑗 in the test set, calculate the

prediction scores 𝑠𝑖(𝑥𝑗) of each model.

2. Standardizing Prediction Results: Perform Rank Scaling on each model's prediction scores to

obtain standardized scores �̂�𝑖(𝑥𝑗).

3. Weighted Fusion: Calculate the final prediction probability using the determined weights 𝑤𝑖:

𝑃(𝑦 = 1 | 𝑥𝑗) = ∑ 𝑤𝑖 �̂�𝑖(𝑥𝑗)

3

𝑖=1

4. Outputting Final Prediction Results: Convert the prediction probability 𝑃(𝑦 = 1 | 𝑥𝑗) into class

labels based on the required threshold, or directly use the probabilities for evaluation metric

calculation.

3.4.5. Advantages of Model Ensemble

Through the above model ensemble method:

 Comprehensive Utilization of Different Models' Strengths: Linear models are good at capturing

shallow statistical features of the text, while deep learning models and pre-trained language models
can capture deep semantic features.

 Improved Generalization Ability: By fusing predictions from multiple models, the risk of

overfitting in a single model can be reduced, enhancing adaptability to unknown data.

 Enhanced Model Robustness: Errors from different models have certain complementarity;

ensemble can reduce overall errors.

4. Experimental Results and Model Performance

Figure 3. The benchmark scores of gold, silver, and bronze medals in the LLM - Detect AI Generated

Text competition. Our final score surpasses the silver medal benchmark

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

65

To better demonstrate quantitative results, we compared our model's score in the Kaggle competition

with the medal thresholds, as shown in Figure 3. The ensemble model achieved a score of 0.967466 on

the dataset, surpassing the bronze medal standard (0.964223–0.963089) and falling within the silver

medal range (0.973915–0.964228). This indicates that the method has strong detection capabilities.
Although it did not reach the gold medal standard (0.990206–0.974234), this achievement is quite

competitive on the Kaggle competition leaderboard, fully demonstrating the potential of multi-model

ensemble in complex text detection tasks.

4.1. Performance of Individual Models

 Linear Model: The linear model trained on the DAIGT V2 dataset performed excellently, effectively

capturing shallow features of the text and providing a good baseline for the final ensemble model.

 Deep Learning Model (DeBERTa-v3-small): The DeBERTa-v3-small model fine-tuned on large-

scale datasets effectively learned deep semantic features of the text, significantly improving detection

accuracy.

 Pre-trained Model (DistilRoBERTa): By fine-tuning on third-party datasets, the DistilRoBERTa

model balanced computational efficiency and performance, providing strong support for multi-model

fusion.

4.2. Model Ensemble and Fusion
The ensemble strategy performed weighted rank normalization fusion on the prediction results of each

model and conducted grid search on the validation set to determine the optimal weights. Results show

that this ensemble strategy can greatly improve the detection accuracy and stability of the model. The
AUC value corresponding to the Kaggle competition test data reached 0.967466.

Through this multi-model ensemble method, the model exhibited outstanding performance in

handling diverse texts and complex LLM-generated text detection tasks, outperforming any single

model.

5. Conclusion

In summary, this paper proposes a detection method for LLM-generated text based on multi-model

ensemble. The method combines the advantages of linear models, deep learning models, and pre-trained
language models, successfully achieving effective detection of text generated by LLMs. Scoring

0.967466 in the Kaggle competition, it surpasses the bronze medal standard and falls within the silver

medal range, demonstrating high generalization ability and robustness.
In this study, the linear model primarily captures shallow statistical features of the text, the deep

learning model (DeBERTa-v3-small) provides deeper semantic representations, and the pre-trained

DistilRoBERTa model further enhances detection capabilities through knowledge distillation. By

weighting and fusing these models, we significantly improved overall detection performance.
This research provides a new solution for detecting LLM-generated text, helping to strengthen the

identification of different types of text, especially in fields like education and media. The multi-model

ensemble strategy in this study not only achieved good results in this competition but also provides
important references for future text detection in broader scenarios. Future research can further explore

different model architectures and feature fusion to handle multilingual texts and the continuously

evolving LLM models, further improving detection accuracy and robustness.

References
[1] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020).

Language Models are Few-Shot Learners. In Advances in Neural Information Processing

Systems (Vol. 33, pp. 1877-1901). Curran Associates, Inc.
[2] Uchendu, A., Suresh, H., Xu, W., & Lee, S. (2020). Authorship Attribution for Neural Text

Generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP) (pp. 8384-8395). Association for Computational Linguistics.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

66

[3] Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., & Choi, Y. (2019). Defending Against Neural

Fake News. In Advances in Neural Information Processing Systems (Vol. 32, pp. 9051-9062).

Curran Associates, Inc.

[4] DAIGT V2 Train Dataset. (2022). Kaggle. Available at: https://www.kaggle.com/datasets/
thedrcat/daigt-v2-train-dataset

[5] Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., ... & Leahy, C. (2020). The

Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv preprint arXiv:2101.
00027. Available at: https://www.kaggle.com/datasets/canming/piles-and-ultra-data

[6] Human vs. LLM Text Corpus. (2023). Kaggle. Available at: https://www.kaggle.com/datasets/

starblasters8/human-vs-llm-text-corpus

[7] Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 66-71).

Association for Computational Linguistics.
[8] He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with

Disentangled Attention. In International Conference on Learning Representations (ICLR)

2021. Available at: https://openreview.net/forum?id=XPZIaotutsD
[9] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/106/20241331

67

