

Multi-Agent System Anti-Interference Algorithm Based on
Deep Reinforcement Learning

Fangbo Zhang1,a,*,†, Yongkang Zhang2,b,†, Yongqing Zhao1,c, Jiahui Hou1,d

1Taizhou College, Nanjing Normal University, Nanjing, Jiangsu, 225300, China

2Pingdingshan University, Pingdingshan, Henan, 467000, China

a. 2052836606@qq.com, b. 2357383824@qq.com, c. 19515922173@139.com,

d. 2286715378@qq.com

*corresponding author
†These authors contributed equally to this work

Abstract: As multi-agent systems are increasingly applied in various environments, achieving

stable control under communication interference has become a key challenge. This paper

proposes a stability control algorithm based on a Markov model and reinforcement learning,

which enables the multi-agent system to achieve its goals through a reward and punishment

mechanism under interference. The results demonstrate that the algorithm effectively handles

communication interference, converges well, and ultimately completes control tasks,

showing promising application prospects for the proposed solution.

Keywords: Reinforcement Learning, Multi-Agent System, Stable control, Anti-Interference,

Communication.

1. Introduction

With the development of Multi-Agent Systems (MAS), improving their robustness in complex

environments has become a research focus[1]. Traditional methods enhance system stability and anti-

interference capabilities but rely on precise mathematical models and high-quality parameters.

However, these methods often face limitations when dealing with uncertainties or dynamic

environments. Recently, Deep Reinforcement Learning (DRL)[2], based on the Markov Decision

Process (MDP), has shown great potential in addressing these challenges. Unlike traditional

approaches, DRL does not require precise mathematical models. Instead, it uses a reward-punishment

mechanism, allowing agents to learn and adapt through trial and error to achieve control objectives,

even in the presence of interference[3,4]. This makes DRL especially suitable for handling complex

disturbances and uncertainties, thereby enhancing system robustness and stability.

In MAS, agents not only interact with the environment but also collaborate or compete with each

other. The Multi-Agent Soft Actor-Critic (SAC) algorithm is noted for its ability to handle continuous

action spaces and multi-agent collaboration[5]. By introducing an entropy regularization term, SAC

balances exploration and exploitation, improving system robustness and avoiding local optima. Given

the complexity and uncertainties present in MAS environments, this study selects reinforcement

learning as a solution to stabilize the multi-agent model under interference. MAS has broad

applications in areas such as autonomous driving, drone swarming, intelligent manufacturing, and

robot control. This study provides a new approach to MAS stability and demonstrates the adaptability

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251759

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

50

of DRL in achieving control objectives without relying on precise models and high-quality parameters

but only based on MDPs, even in the face of interference.

2. Methodology

This section mainly explains the model establishment of the multi-agent system with communication

in the absence of interference (2.1), the control law used to achieve the goals of the multi-agent system

(2.2), and the model establishment under the condition of communication interference. Finally, it

elaborates on the Markov process of the anti-interference multi-agent system (2.3) and the principles

of the multi-agent SAC algorithm (2.4).

2.1. Establishment of Multi-Agent System with communication

The multi-agent system considered in this paper consists of 𝑛 agents, where there is a designated

leader agent. The leader agent can communicate information to other agents. In the designed multi-

agent system, the leader agent communicates with the other agents, providing them with relevant

information. The follower agents use the information from the leader to control their movements and

reach the target position.

The communication information provided by the leader agent includes the position of the leader

relative to the target. The other agents determine their own positions relative to the target by

measuring their relative position to the leader agent and using the communication information

provided by the leader. As a result, the follower agents are able to move towards and enter the target

region. First, there are some variables defined: n represent the total number of agents in the system;

𝑝𝐿(𝑡) be the position of the leader agent at time; 𝑝𝑇 be the target position.

Base these variables, there is the mathematical formulation of the Multi-Agent System with

communication:

Leader Agent's Information

The leader agent communicates its position relative to the target as follows:

Δ𝑝𝐿(𝑡) = 𝑝𝐿(𝑡) − 𝑝𝑇 (1)

(1) Follower Agents' Control

Each follower agent measures its relative position to the leader as:

Δ𝑝𝑖(𝑡) = 𝑝𝑖(𝑡) − 𝑝𝑇 (2)
Using the leader's communication, each follower calculates its position relative to the target:

𝑝𝑖(𝑡) − 𝑝𝑇 = Δ𝑝𝑖(𝑡) + Δ𝑝𝐿(𝑡) (3)
Thus, each follower agent knows its position relative to the target and can design a control strategy

to minimize the distance to the target, expressed as:

𝑢𝑖(𝑡) = −𝑘(𝑝𝑖(𝑡) − 𝑝𝑇) (4)

where k is a positive constant dictating the rate of convergence towards the target.

(2) Objective:

The goal of the multi-agent system is for all agents to reach the target region, mathematically

described as:
𝑙𝑖𝑚
𝑡→∞

  ∥ 𝑝𝑖(𝑡) − 𝑝𝑇 ∥= 0, ∀𝑖 = 1,2, … , 𝑛 (5)

This formulation ensures that all agents eventually reach the target, using information provided by

the leader and their relative positions to the leader

2.2. Proportional Navigation Guidance (PNG) Control Strategy

To ensure the followers reach the target area, we use Proportional Navigation Guidance (PNG) as the

control strategy. PNG is commonly used in control systems, especially for guiding objects like

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251759

51

missiles, where control action is proportional to the rate of change of the Line-of-Sight (LOS) to the

target. Here, PNG helps followers converge to the target based on their relative position to the leader

and the target.

Mathematical Formulation of the Proportional Navigation Guidance (PNG) Control Strategy:

(1) Relative Velocity and LOS Rate

We define the 𝑣𝑖(𝑡) be the velocity of the 𝑖-th follower agent, 𝜆𝑖(𝑡) represent the Line-of-Sight

(LOS) angle between the 𝑖-th follower agent and the target. In proportional navigation, the control

input is proportional to the rate of change of the LOS angle 𝜆𝑖(𝑡), which is influenced by the follower

agent’s relative position to the leader and the target.

(2) Control Law

The control input for each follower agent is defined based on the PNG law, which is typically

proportional to the closing velocity 𝑣closing(𝑡) (the relative speed between the agent and the target)

and the LOS rate �̇�𝑖(𝑡).

The control law for the can be expressed as:

𝑢𝑖(𝑡) = 𝑁 ⋅ 𝜈closing(𝑡) ⋅ �̇�𝑖(𝑡) (6)

where N is The Proportional Navigation Guidance (PNG) coefficient for the 𝑖-th agent.

(3) Determining the LOS Rate

The LOS Angle between the 𝑖-th follower agent and the target is calculated as:

𝜆𝑖(𝑡) = arctan (
𝑦𝑖(𝑡) − 𝑦T

𝑥𝑖(𝑡) − 𝑥T
) (7)

Where (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) is the position of the 𝑖-th follower agent, and (𝑥T, 𝑦T) is the position of the

target. The LOS rate �̇�𝑖(𝑡) is the time derivate of the LOS angle:

𝜆�̇�(𝑡) =
𝑑

𝑑𝑡
(𝑦𝑖(𝑡)−𝑦T)(𝑥𝑖(𝑡)−𝑥T)−

𝑑

𝑑𝑡
(𝑥𝑖(𝑡)−𝑥T)(𝑦𝑖(𝑡)−𝑦T)

(𝑥𝑖(𝑡)−𝑥T)2+(𝑦𝑖(𝑡)−𝑦T)
(8)

(4) Convergence to the Target Region

The control law ensures that the closing velocity decreases as the agents approach the target, while

proportional navigation adjusts the agents’ trajectories based on changes in the LOS rate. This allows

the follower agents to steer towards the target while minimizing deviations from the desired path. By

continuously adjusting their velocities using PNG control, the follower agents can converge to the

target region. The system's ultimate objective is to satisfy equation (5).

2.3. Establishment of a Multi-Agent Model with communication interference

If there is communication interference between the leader agent and the follower agents, then the final

tracking information of the follower agents to the target region will also have an error, as given by

the following formula:

Δ𝑝𝑖(𝑡) = (𝑝𝑖(𝑡) − 𝑝𝑇) + 𝜀(𝑡) (9)

where: Δ𝑝𝑖(𝑡) represents the tracking error of the 𝑖-th follower agent at time t, 𝑝𝑖(𝑡) is the position of

the 𝑖-th follower agent at time t. 𝜀(𝑡) is the communication error between the leader agent and the

follower agents at time t.

2.4. Markov Model of Anti-Interference Multi-Agent System

In order to train the anti-Interference multi-agent system using reinforcement learning algorithms, a

Markov model needs to be established. The Markov model includes elements such as states, actions,

and reward functions:

State: The positions of all agents at time 𝑡, denoted as:

𝑠𝑡 = [𝑝1(𝑡), 𝑝2(𝑡), … , 𝑝𝑛(𝑡)] (10)

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251759

52

Actions: The Proportional Navigation Guidance (PNG) coefficient for the 𝑖-th agent at time t,

denoted as 𝑎𝑖(𝑡) in the equation (6), it can be summarized as:

𝑢𝑖(𝑡) = 𝑎𝑟(𝑡) ⋅ 𝜈closing(𝑡) ⋅ �̇�𝑖(𝑡) (11)

The reward function: The reward function is defined based on the change in distance of all agents

from the target region between time 𝑡 and time t−1. The formula for the reward at time 𝑡 is:

𝑟(𝑡) = {
−1, if∥∥𝑝𝑖(𝑡) − 𝑝𝑇∥∥ > ∥∥𝑝𝑖(𝑡 − 1) − 𝑝𝑇∥∥

+1, if∥∥𝑝𝑖(𝑡) − 𝑝𝑇∥∥ ≤ ∥∥𝑝𝑖(𝑡 − 1) − 𝑝𝑇∥∥
(12)

In summary, by constructing the Markov model of the above anti-interference multi-agent system,

the multi-agent system can still achieve its goals through adaptive decision-making, even in the case

of communication interference.

2.5. Multi-Agent Soft Actor-Critic (SAC) algorithm

Through sections 2.1 to 2.4, the multi-agent system with communication interference and the

corresponding Markov process are established. This section introduces the main principles of the

MASAC algorithm used in this paper.

The Multi-Agent Soft Actor-Critic (SAC) algorithm is an extension of the Soft Actor-Critic

algorithm designed for multi-agent systems. SAC is a model-free, off-policy algorithm based on the

maximum entropy framework, which encourages exploration by maximizing the expected return

while also maximizing entropy. This results in more stable and efficient learning, making it suitable

for complex multi-agent environments.

(1) Entropy Regularization

The SAC algorithm uses an entropy term to encourage exploration. The objective is to maximize

both the expected cumulative reward and the entropy of the policy. The entropy term is denoted as

𝐻(𝜋(⋅ |𝑠)).

(2) Loss Function for Policy (Actor)

The policy update rule for the actor maximizes the expected Q-value and the entropy term, given

by the following loss function:

𝐽𝑥(𝜃) = 𝐸𝑠𝑡~𝐷,𝑎𝑡~𝜋𝜃
[𝛼 log(𝜋𝜃(𝛼𝑡 ∣∣ 𝑠𝑡)) − 𝑄𝜙(𝑠𝑡, 𝑎𝑡)] (13)

Where D is the replay buffer, α is the temperature parameter controlling the trade-off between

reward maximization and entropy maximization, 𝑄𝜙(𝑠𝑡, 𝑎𝑡) is the estimated Q-value of taking action

𝑎𝑡 in state 𝑠𝑡.

(3) Loss Function for Critic (Q-function)

The critic is updated by minimizing the temporal difference (TD) error, defined as:

𝐽𝑄(𝜙) = 𝐸(𝑠𝑡,𝑎𝑡 ,𝑠𝑡+1,𝑎𝑡+1)~𝐷 [(𝑄𝜙(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾𝐸𝑎𝑡+1~𝜋𝜃
[𝑄𝜙′(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log(𝜋𝜃(𝑎𝑡+1|𝑠𝑡+1))]])] (14)

(4) Temperature Parameter Update

The temperature parameter, which controls the balance between exploration and exploitation, is

also updated to ensure that the policy maintains a desired level of entropy. The loss function for

updating

𝛼 is given by:

𝐽(𝛼) = 𝐸𝑎𝑡~𝜋𝜃
[−𝛼 log(𝜋𝜃(𝑎𝑟|𝑠𝑡)) − 𝛼�̂�] (15)

Where �̂� is the target entropy.

3. Experiment

This section mainly conducts three experiments: the collaborative control simulation of the multi-

agent system without interference, the collaborative control simulation of the multi-agent system

under interference, and finally, the collaborative control training of the multi-agent system based on

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251759

53

the deep reinforcement learning algorithm. The anti-interference capabilities of the multi-agent

system in these three environments are then compared. The experiment is simulated on the device of

the i5 with 12cores, the deep learning environment is Pytorch.

3.1. Experimental parameter settings

For the experiment, this section provides the physical parameters of the multi-agent system, as well

as the initial states and other parameters corresponding to the interference model, as shown in Table

1. Finally, the network and training parameters of the multi-agent reinforcement learning algorithm

are presented, as shown in Table 2.

Table 1: The Parameter for the physical parameters of the multi-agent system

Parameter names Value

Number of the agents 5

Action space [2,8]

Interference amplitude 10

Table 2: Network and training parameters of the multi-agent reinforcement learning

Parameter names Value

Learning Rate for network (actor/critic) 0.0001/0.0001

Number of Steps per Episode 100

Policy Update Frequency Every 100 episodes

Num of all Episodes 1500

3.2. The result of the experiment

Based on the environmental parameters shown in Table 1, we conducted simulations for the multi-

agent system in two environments: one without communication interference and one with

communication interference, following the principles outlined in Chapter 2. The simulation results of

the system are shown in Figures 1 and 2.

Figure 1: Multi-agent system without

communication interference

Figure 2: Multi-agent system with

communication interference

Using the reinforcement learning parameters provided in Table 2, we trained the multi-agent

system with communication error interference. The reward curve of the reinforcement learning

algorithm is shown in Figure 3. Applying the trained network to the environment with communication

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251759

54

interference produced the simulation results shown in Figure 4. Additionally, the curves of the actions

of each agent changing with the steps are shown in Figure 5.

Figure 3: The MASAC reward

with the episode

Figure 4: The Multi-agent

system without

communication

interference controlled by

MASAC

Figure 5: The actions for the

5agents controlled by the

MASAC

3.3. Results Analysist

From Figures 1 and 2, it can be seen that the multi-agent system without interference can achieve its

goal, while the system with interference cannot, indicating that a multi-agent system without anti-

interference algorithms cannot succeed under interference. From Figures 3 and 4, it can be observed

that the reinforcement learning algorithm converges after 1500 training rounds, and the trained

network effectively enables the system to achieve its goal even with interference. Combining Figure

5 with Figures 3 and 4, it can be concluded that the stable control algorithm based on reinforcement

learning proposed in this paper can adaptively adjust control parameters, allowing the multi-agent

system to handle communication errors and complete the task effectively.

4. Conclusion

To address the issue where a multi-agent system fails to complete control tasks under communication

interference, a Markov model of the multi-agent system was established, and reinforcement learning

was applied to train the model. The results show that reinforcement learning, through a reward and

punishment mechanism, enables the interference-affected multi-agent system to achieve its goals.

The algorithm can converge, and the trained network can effectively handle communication

interference, ultimately completing the control tasks.

References

[1] Gao, Y., Chen, S., & Lu, X. (2004). Research on reinforcement learning technology: a review. ACTA AUTOMATICA

SINICA, 30(1), 86-100.

[2] LandersMatthew, & DoryabAfsaneh. (2023). Deep reinforcement learning verification: a survey. ACM Computing

Surveys.

[3] Yang, Z. , Merrick, K. , Abbass, H. , & Jin, L. . (2017). Multi-Task Deep Reinforcement Learning for Continuous

Action Control. Twenty-Sixth International Joint Conference on Artificial Intelligence.

[4] Buoniu, L. , Bruin, T. D. , Toli, D. , Kober, J. , & Palunko, I. . (2018). Reinforcement learning for control:

performance, stability, and deep approximators. Annual review in control.
[5] Wu, L. , Wu, Y. , & Tian, Q. Y. (2023). Multiagent soft actor-critic for traffic light timing. Journal of Transportation

Engineering, Part A. Systems, 149(2), 4022133.1-4022133.11.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251759

55

