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Abstract. Greenhouses are pivotal in extending the growing season for various crops by creating 

conducive environments that enhance plant growth. A critical factor in maximizing the efficiency 

of greenhouses is the optimization of light transmittance through multi-layer glass structures. 

This not only supports plant health but also conserves energy by maintaining a warmer internal 

climate. The application of quantum genetic algorithms (QGAs) to this context represents a 

significant advancement, as these algorithms excel in handling multi-objective optimization 

challenges. By targeting the precise calibration of glass thickness, QGAs can substantially 

influence the amount of solar energy harnessed within the greenhouse, especially when the sun 

is directly overhead at noon. This paper presents an in-depth study on the use of quantum genetic 

algorithms to optimize the thickness of three distinct layers of glass in greenhouse settings. Our 

findings reveal that QGAs are capable of generating various combinations of glass thickness that 

not only maximize the total energy transmitted but also ensure stability in the energy output 

across different scenarios. The robustness of QGAs in consistently deriving optimal solutions 

underscores their potential as a superior technique in architectural design for agricultural 

applications. Comparative analysis with classical genetic algorithms and random number 

optimization techniques further demonstrates the superiority of quantum genetic algorithms.  

Keywords: Greenhouse, Multi-Layer Glass, Light Transmittance, Quantum Genetic Algorithm, 

Classic Genetic Algorithm. 

1.  Introduction 

Greenhouses are essential for off-season crop cultivation by providing controlled environments optimal 

for plant growth, including appropriate temperatures, nutrients, and light intensity. Crucial to this control 

is the management of light transmittance through the greenhouse coverings, which not only influences 

plant growth but also affects various physiological aspects such as soil microbial activity and chlorophyll 

content in plants [1-3]. Innovations in greenhouse environmental control have incorporated various 

intelligent control methods like fuzzy, decoupling, artificial intelligence, and phenotype controls to 

optimize conditions [4]. Advanced techniques and frameworks continue to evolve, drawing from diverse 

fields such as immunology for intelligent algorithm design [5] and artificial neural networks for 

improved prediction of climate parameters [6]. Furthermore, efforts to enhance resource efficiency in 

arid conditions and improve control accuracy through predictive algorithms and adaptive models are 

ongoing [7,8]. 
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Despite extensive research on optimizing greenhouse conditions, there is a notable gap in studies 

focusing on the optimization of greenhouse glass thickness—a common element in greenhouse 

construction that significantly affects energy capture and efficiency [9]. The thickness of the glass 

directly impacts the amount of light that can penetrate the greenhouse, affecting the energy available for 

plant growth [10]. Given the quantum genetic algorithm’s (QGA) capability in handling multi-objective 

optimization problems and its success in fields like building structure optimization and large-scale 

network management, it stands out as a promising tool for this application [11,12]. 

This paper applies the quantum genetic algorithm to optimize the thickness of multi-layer glass in 

greenhouses to maximize light transmittance and energy utilization. Focusing on three layers of glass, 

we simulate direct sunlight conditions at noon, modeling the physical process of light penetration before 

optimizing the glass layers' thickness with QGA. The results not only yield the optimal combination of 

glass thicknesses for maximum emergent light energy but also demonstrate the superiority of QGA over 

classical genetic algorithms and random number optimization methods. By enhancing the transmittance 

of insulating glass, this study contributes significantly to increasing the total energy available to plants 

within the greenhouse, showcasing the potential of QGA in agricultural applications [13,14]. literature 

review 

2.  Literature review 

To enhance greenhouse performance, various advanced environmental control methods have been 

explored. These methods include fuzzy logic, decoupling control, and artificial intelligence (AI) 

approaches, which collectively aim to achieve optimal greenhouse climate conditions . In particular, AI 

and machine learning techniques have shown significant promise in predicting climate parameters and 

controlling greenhouse environments. For instance, neural networks have been used to model 

greenhouse conditions accurately, allowing for better prediction and control of temperature and 

humidity . Other approaches, such as adaptive models and predictive algorithms, have been specifically 

employed to improve resource efficiency and control accuracy in greenhouse settings, demonstrating 

the broad applicability of intelligent control frameworks [3]. Despite the progress in greenhouse control 

technologies, there is a notable lack of focus on optimizing the thickness of greenhouse glass, which is 

crucial for maximizing light transmittance and energy efficiency. Previous studies on glass optimization 

in greenhouse design have primarily concentrated on energy-saving strategies . However, the thickness 

of the glass, which directly affects the amount of light penetration, remains an underexplored aspect. 

Given that light availability is one of the fundamental drivers of plant growth, optimizing glass thickness 

offers a potentially significant avenue for enhancing greenhouse productivity [6]. Quantum genetic 

algorithms (QGAs) have emerged as a promising tool for addressing multi-objective optimization 

challenges, including those related to energy efficiency and structural design  . QGAs combine the 

principles of quantum computing with classical genetic algorithms, thereby enhancing the search space 

and improving the convergence rate. This makes QGAs particularly suitable for complex optimization 

problems, where they can outperform classical algorithms in terms of both speed and solution quality. 

Recent applications of QGAs in building structure optimization and large-scale network management 

demonstrate their potential for tackling energy-related optimization issues. Studies comparing QGAs 

with classical genetic algorithms reveal that QGAs often yield faster convergence and more optimal 

solutions, especially in cases where multiple variables and constraints are involved. The application of 

QGAs to optimize greenhouse glass thickness represents a novel approach that aligns with the recent 

trend towards integrating quantum computing techniques into agricultural applications. Classical genetic 

algorithms have been widely applied in greenhouse optimization, focusing on parameters such as 

temperature and humidity control to enhance crop yield [5]. However, these algorithms typically lack 

the computational efficiency needed to handle the complex interdependencies involved in optimizing 

multi-layer glass thickness for light transmittance [6]. By contrast, QGAs offer a more robust solution 

due to their ability to operate in a superposition state, which allows them to evaluate multiple solutions 

simultaneously and explore a larger solution space. This characteristic makes QGAs particularly 

effective for optimizing the transmittance properties of multi-layer glass, ensuring that maximum solar 
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energy is harnessed within the greenhouse. In comparison to random optimization methods, QGAs 

provide a more structured approach to finding optimal solutions. Random number-based techniques can 

offer a baseline for performance; however, they lack the precision and adaptability required to identify 

the best configurations for greenhouse glass thickness [6]. Furthermore, studies have shown that QGAs 

consistently outperform classical genetic algorithms and random optimization methods in terms of 

stability and robustness, particularly in scenarios requiring the fine-tuning of multiple parameters [4]. 

The unique capabilities of QGAs in managing multi-layer configurations and their superior optimization 

performance underscore their potential as a powerful tool in greenhouse design and beyond. By 

leveraging QGAs to optimize glass thickness in greenhouses, this study contributes to the broader field 

of agricultural innovation and material science. The findings demonstrate that QGAs not only enhance 

light transmittance but also improve the overall energy efficiency of greenhouses, which is essential for 

sustainable agricultural practices. The study also highlights the versatility of QGAs in various 

agricultural applications, suggesting future possibilities for integrating quantum computing into smart 

agriculture and environmental management. In summary, this literature review illustrates the importance 

of optimizing greenhouse glass thickness for energy efficiency and highlights the significant advantages 

of QGAs over classical methods. The research underscores the potential of QGAs to revolutionize 

greenhouse design by offering a reliable, fast, and accurate means of optimizing multi-layer structures, 

paving the way for more energy-efficient and productive agricultural systems. 

3.  Algorithm design 

3.1.  Calculation of emergent light intensity under single-layer glass 

As shown in Figure 1, Sunlight vertically enters glass from air. 𝑛0 is the refractive index of air at 1.0, 

𝑛 is the refractive index of glass at 1.5, 𝐼𝑖 is the intensity of the incident sunlight, 𝐼𝑡 is the intensity 

of the light transmitting through the glass, 𝐼𝑟 is the intensity of the light reflected by the glass, and 𝐿 

is the thickness of the glass. The formula for calculating transmittance can be obtained as follows: 

𝑇 =
𝐼𝑡

𝐼𝑖
=

(1−𝑅)
2

(1−𝑅)
2
+4𝑅sin

2
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Figure 1. Sunlight injects into a single-layer glass (Photo credit: Original). 
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The intensity of the incident light is defined as Gaussian distribution in equation (4). 

𝐼𝑖 = 1000exp⁡(−
(𝜆−𝜆

0
)2

2𝜎2
)                            (4) 

λ is the wavelength of sunlight, ranging from 300nm to 2000nm, and the center wavelength 𝜆0 is 

selected as 580nm. 𝜎 can be derived from equation (5), with a FWHM of 500. 

𝐹𝑊𝐻𝑀 = 2√2𝑙𝑛2 ⋅ 𝜎                             (5) 

By plotting 𝐼𝑖, we can obtain the Simulated spectrum of incident sunlight as shown in Figure 2. 

 
Figure 2. Simulated spectrum of sunlight (Photo credit: Original). 

If we can obtain the thickness 𝐿  of the glass and substitute it into equation (1) to obtain the 

transmittance, then the intensity of the emergent light is. 

𝐼𝑡 = 𝐼𝑖*𝑇                                   (6) 

3.2.  Calculation of emergent light intensity under multi-layer glass 

The situation of single-layer glass mentioned above can be extended to three-layer glass. The thickness 

of each layer of glass is 𝐿1, 𝐿2, 𝐿3, The emergent light intensity after passing through each layer of 

glass is 𝐼𝑡1,𝐼𝑡2,𝐼𝑡3,The reflected light intensity is 𝐼𝑟1,𝐼𝑟2,𝐼𝑟3, The transmittance of every three-layer 

glass is 𝑇1, 𝑇2, 𝑇3｡The final emergent light intensity can be obtained.  

𝐼𝑡3 = 𝑇1*𝑇2*𝑇3*𝐼𝑖                              (7) 

 
Figure 3. Sunlight injects into a multi-layer glass (Photo credit: Original). 

Proceedings of  CONF-MLA 2024 Workshop:  Securing the Future:  Empowering Cyber Defense with Machine Learning and Deep Learning 
DOI:  10.54254/2755-2721/94/2024MELB0060 

221 



 

 

Taking the given thickness of three layers of glass as an example, which are 5mm, 6mm, and 4mm, 

the transmittance of the glass can be obtained by substituting them into equation (1). Then, by 

substituting the results into equation (6), the relationship between different wavelengths and the intensity 

of the emergent light under this glass thickness combination can be obtained as shown in Figure 4. 

 
Figure 4. The spectra of sunlight passing through 5mm, 6mm, and 4mm glass (Photo credit: Original). 

3.3.  Optimization of emergent light intensity using quantum genetic algorithm 

Firstly, initialize the population size and individual genes, taking the thickness of three pieces of glass 

as a variable and using it as a gene. Set a set of glass thickness combinations as one individual, with 

each individual having three quantum bit. Each quantum bit is in a superposition state which allows 

quantum bits to have the possibility of both |0⟩and |1⟩ simultaneously. Initialize the population using 

quantum bit encoding, and set the initial state of each quantum bit to a uniform superposition state, and 

the initial new individual is（
1

√2
，

1

√2
，

1

√2
）,which means that the probability of a quantum bit 

collapsing to |0⟩ and |1⟩ is the same.  

Afterwards, the population is measured and the quantum state is converted into binary encoding, and 

quantum bits collapse from a superposition state to a definite 0 or 1. 

The third step is to convert binary encoding into decimal and evaluate the fitness of each individual, 

Using the thickness of the three-layer glass as the variable, quantum genetic algorithm is used to 

optimize the final emitted light intensity to maximize it, obtaining the maximum value of the total energy 

of vertically incident sunlight. The thickness of the glass is limited to 1mm to 1cm. The optimization 

objective function is 

𝐼_𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐼𝑡3
2000

300
𝑑𝜆                            (8) 

By approximating and discretizing the integral, the emergent light intensity at each wavelength can 

be calculated separately, and the total energy can be obtained by adding them up. If this value is larger, 

it indicates that the individual is more outstanding. 

The fourth step is to update the population using a quantum rotation gate, which can update each 

individual based on the evaluation results. The more excellent the individual, the smaller the rotation 

angle of the quantum rotation gate, so the probability of retaining the original gene will increase. On the 

contrary, if the fitness value is poor, the rotation gate will rotate its quantum bits in the opposite direction, 

reducing the probability of this state and increasing the probability of it becoming another worthwhile 

state. The final solution approaches the optimal direction. By iterating through the above steps, the 

optimal solution can be obtained. 
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4.  Optimization results 

4.1.  Optimization results of quantum genetic algorithm 

Table 1 shows that the algorithm can obtain different combinations of glass thickness, and the final 

optimized total energy is very similar. Figure 5 shows that the algorithm can converge to the maximum 

light intensity each time, and the quantum genetic algorithm can obtain results within 300 generations 

when solving this problem. These indicate that this algorithm is very stable and robust, and can always 

find the optimal solution, so it can solve the optimization problem of glass thickness in greenhouses. 

By substituting the four combinations of glass thickness into the model, the relationship between 

different wavelengths and light intensity can be obtained as shown in Figure 6. 

Table 1. Optimization results of quantum genetic algorithm. 

 Total energy Thickness 1(mm) Thickness 2(mm) Thickness 3(mm) 

The first time 389324.1866 8.1389 4.6675 3.0303 

The second time 389785.3392 3.5482 6.8796 6.8129 

The third time 390913.1638 2.6255 8.4823 9.4430 

The fourth time 389346.2705 3.7330 1.2410 3.5482 

Average total energy 389842.24    

 
Figure 5. Evolution process diagram corresponding to the four results, with the top left corresponding 

to the first time, the top right corresponding to the second time, the bottom left corresponding to the 

third time, and the bottom right corresponding to the fourth time (Photo credit: Original). 
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Figure 6. Spectral diagrams corresponding to four glass thickness combinations, with the top left 

corresponding to the first type, the top right corresponding to the second type, the bottom left 

corresponding to the third type, and the bottom right corresponding to the fourth type (Photo credit: 

Original). 

From Figure 6, it can be seen that compared to the original light, after passing through three layers 

of glass, the distribution of the emergent light intensity is still similar to the approximate distribution of 

the original incident light. However, after passing through three layers of glass, the intensity of some 

wavelengths of light shifted downwards, and the degree of deviation varied with different combinations 

of glass thicknesses, resulting in differences in the final intensity of the emitted light. If at each 

wavelength, the higher the vertical axis, the closer it is to the original light, indicating that the energy 

loss after passing through the glass is smaller, and the total energy of the light ultimately entering the 

greenhouse will also be larger. 

4.2.  Optimization results of classical genetic algorithm and comparison  

As shown in Table 2, classical genetic algorithms can also solve this problem. At the same time, random 

numbers were used to generate the thickness of three layers of glass to simulate the actual situation of 

selecting glass thickness randomly, and the total energy of the emergent light was obtained as shown in 

Table 3. By comparing Figure 7, it can be seen that the quantum genetic algorithm obtains the maximum 

total energy and the best optimization effect, while the classical genetic algorithm also obtains a total 

energy greater than the randomly generated optimization method. This indicates that in practical 

situations, selecting glass thickness randomly may lead to energy loss and have a negative effect on crop 

growth in greenhouses. Overall, quantum genetic algorithm has better advantages in solving this 

problem. 
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Figure 7. Comparison of quantum genetic algorithm, classical genetic algorithm, and using random 

numbers (Photo credit: Original). 

Table 2. Optimization results of classical genetic algorithm. 

 Total energy Thickness 1(mm) Thickness 2(mm) Thickness 3(mm) 

The first time 387015.0795 5.2774 1.6273 6.9779 

The second time 387144.8553 3.1779 2.3065 5.4587 

The third time 385942.8147 8.5424 3.6697 9.6986 

The fourth time 385241.0809 1.1606 5.7726 7.5404 

Average total energy 386335.9576    

Table 3. Optimization results using random numbers. 

 Total energy Thickness 1(mm) Thickness 2(mm) Thickness 3(mm) 

The first time 379988.5631 1.4 1.8 8.4 

The second time 380398.7147 7.3 3.8 9.6 

The third time 381581.7074 1.3 4.9 7.7 

The fourth time 379675.8526 7.8 4.4 6.1 

Average total energy 380411.2094    

5.  Conclusion 

This study effectively demonstrates the application of the quantum genetic algorithm (QGA) in 

optimizing glass thickness for greenhouse design, providing a robust method to maximize the energy 

available to crops and enhance yield potential. By tailoring glass thickness, optimal light transmittance 

and energy utilization are ensured, substantiating the utility of QGA not only in greenhouse applications 

but also in studying the transmittance properties of multi-layer thin films. The precision of the optimized 

glass thickness highlights the algorithm’s accuracy and its potential for broader applications in materials 

science. To address the practical limitations of glass processing, integrating a thin film coating process 

is suggested to refine the glass further and align it more closely with the optimized parameters. 

Additionally, exploring the possibility of adjusting the refractory index within the manufacturing 

process could further enhance the intensity of light transmitted, pushing the boundaries of current 

greenhouse technology. 
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Looking ahead, the adaptability of this method could be significantly expanded by considering 

variable sunlight incidence angles, incorporating the glass angle as a dynamic variable in the greenhouse 

lighting system. This adaptation would pave the way for a more automated and intelligent lighting 

regulation within greenhouses, potentially revolutionizing the way light optimization is approached in 

agricultural settings. Such advancements could lead to more energy-efficient greenhouses that are 

capable of adjusting in real-time to changing environmental conditions, thus maximizing both energy 

usage and crop yields in an increasingly sustainable manner. 
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