
 

 

Multimodal Brain Tumor Segmentation Based on Multi-Scale 

Feature Extraction Network 

Yunji Chen 

University of Electronic Science and Technology of China, Glasgow College, UESTC, 

Hainan, 572000, China 

2023300903027@std.uestc.edu.cn 

Abstract. Brain tumors are prevalent and highly fatal conditions, making their precise detection 

crucial for effective treatment. Accurate brain tumor segmentation in magnetic resonance 

imaging (MRI) scans is often crucial for clinical diagnosis and developing more precise 

treatment strategies. MRI, a standard diagnostic tool for brain tumor identification, offers 

multiple modalities, each providing unique imaging characteristics. However, existing deep 

learning-based segmentation methods often struggle with varying tumor size, which can impact 

their effectiveness. To address these issues, we incorporate DeepLabv3+ into the task of brain 

tumor segmentation, leveraging its Atrous convolutional capabilities to capture comprehensive 

multi-scale features. By combining the multi-scale feature extraction strengths of DeepLabV3+ 

with the diverse imaging modalities of MRI, our approach mitigates the limitations associated 

with single-scale analysis, thereby enhancing diagnostic accuracy and supporting improved 

therapeutic outcomes. This article finds that this model achieves an accuracy of approximately 

93.5% on the BraTS_2020 dataset. 
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1.  Introduction 

The human brain is a vital and complex organ, and brain tumors are not only prevalent but also have a 

high mortality rate. Some malignant brain tumors can develop into cancer. An estimated 87,500 new 
cancer cases (42,400 males and 45,100 females) occurred in 2022 [1]. For patients with brain tumors, 

accurately delineating the tumor's location in MRI scans is crucial for effective treatment planning. The 

conventional practice for segmenting tumor areas is manual segmentation. However, this method is 
time-consuming, labor-intensive, and the results varies among observers [2]. Consequently, this 

underscores the importance of integrating automated segmentation techniques into brain tumor MRI 

analysis, which could significantly enhance efficiency and accuracy in clinical practice. 

Utilizing strong magnetic fields and radiofrequency waves, MRI is particularly effective in imaging 
soft tissues, including muscles, brains, and internal organs, which are not easily discernible with 

conventional radiographic methods like X-rays. The dataset utilized in this study, derived from the 

BraTS 2020, includes four distinct MRI modalities, each designed to emphasize different aspects of 
brain anatomy and pathology. 

MRI, by utilizing strong magnetic fields and radiofrequency waves, excels at imaging soft tissues 

such as the brain, muscles, and internal organs—regions not easily captured by traditional radiographic 
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methods like X-rays. The dataset utilized in this study, BraTS 2020, comprises four distinct MRI 

modalities, each highlighting different aspects of brain anatomy and pathology. 

The MRI dataset consists of 4 modalities. Fluid-Attenuated Inversion Recovery (FLAIR) suppresses 
cerebrospinal fluid (CSF) signals, enhancing lesion visibility near CSF. T1-Weighted Imaging (T1) 

highlights fatty tissue, offering detailed anatomical brain assessment. When combined with a contrast 

agent, T1-Weighted Imaging with Contrast Enhancement (T1CE) further improves the visibility of 
specific tissues and lesions, enabling more precise diagnoses. T2-Weighted Imaging (T2), emphasizing 

fluid and edema, is essential for depicting tissue water content and contrasting soft tissues. The MRI 

data also contains a segmentation image, which serves as the ground truth for training and validation of 

deep learning models. 

2.  Literature review 

Deep learning has driven significant advancements in medical image segmentation, particularly in 

structured tasks like brain tumor segmentation. While architectures such as U-Net have been effective 
in capturing local features and hierarchical representations, they face limitations in retaining fine spatial 

details, especially when segmenting small or irregular structures [3]. Conventional CNNs and Fully 

Convolutional Neural Networks (FCNNs) often lack the ability to capture multi-scale information 
effectively, leading to suboptimal performance when dealing with objects of varying sizes and complex 

textures [4,5,6]. These methods also struggle to incorporate global contextual information, critical for 

improving segmentation accuracy in challenging scenarios. 

This study addresses these challenges by introducing an enhanced segmentation framework based on 
the DeepLabv3+ architecture, which utilizes atrous convolution and Atrous Spatial Pyramid Pooling 

(ASPP) to capture multi-scale context and retain fine spatial details, improving boundary precision and 

overall segmentation performance [7]. 

3.  Methodology 

The DeepLabv3+ architecture is specifically designed for high-resolution semantic segmentation, 

leveraging a combination of advanced feature extraction and precise upsampling techniques. This 

architecture is composed of a decoder and an encoder. The encoder in DeepLabv3+ is tasked with 
extracting features from the input image. Leveraging specialized atrous convolutions and the atrous 

spatial pyramid pooling (ASPP) structure, DeepLabv3+ captures multi-scale contextual information 

while preserving high-resolution features. The decoder then enhances the segmentation output by 
recovering spatial details lost during encoding, creating a detailed and accurate segmentation map that 

integrates high-level semantic information with fine-grained spatial details. By integrating atrous 

convolution with multi-scale feature extraction, DeepLabv3+ effectively captures detailed contextual 
information from the brain slices while maintaining spatial resolution. 

3.1.  Atrous convolution 

The atrous convolution is the basic component of ASPP. Within this framework, the atrous convolution 

is employed to enhance the encoder's ability to capture features across multiple scales.  
In contrast to standard convolution, atrous convolution incorporates a dilation rate, which broadens 

the receptive field without raising the number of parameters or sacrificing spatial resolution. The 

operation of atrous convolution can be represented by the following equation:  
y[i] = ∑ x[i + r ∙ k]w[k]k (1)  

where y[i] denotes the value at position i in the output, x[i + r ∙ k] represents the corresponding value 

in the input, and w[k] refers to the weight of the convolution kernel at index k. 

The dilation rate r defines the stride for sampling the input data. In this model, dilation rates of 6, 12, 
and 18 were used to accommodate various sizes of brain tumors. Atrous convolution is identical to 

standard convolution when the dilation rate is set to 1. Compared to standard convolution, atrous 

convolution offers superior flexibility in segmenting brain tumors of various sizes due to its adaptable 
receptive field. An illustration is shown in Figure1.  
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Figure 1: Diagram of atrous convolution and atrous spatial pyramid pooling (ASPP). Atrous 
convolution captures target features at various scales by using dilation rates that introduce controlled 

intervals between kernel elements. ASPP integrates several parallel atrous convolutions with different 

dilation rates, along with a max-pooling layer. The outputs from these layers are then merged and refined 

using a 1×1 convolution to produce the final feature map. 

3.2.  Deeplabv3+ structure 

DeepLabv3+ Structure: Figure 2 gives an overview of the structure of DeepLabv3+, a powerful 

architecture for semantic segmentation tasks that builds upon the strengths of both deep convolutional 
networks and spatial pyramid pooling techniques. The network consists of an encoder and a decoder. 

The encoder extracts features from the input image using a sequence of convolutional layers. 

Leveraging deep convolutional neural networks (DCNN), such as ResNet or Xception, The encoder 
conducts downsampling operations that gradually decrease the spatial resolution of the feature maps 

while capturing progressively more abstract semantic information. [8, 9]. It provides high-resolution 

and low-resolution features to the decoder for further operations. In this experiment, both low-level and 

high-level features are extracted from the input images by the ResNet backbone. The high-level features 
are then processed through Atrous Spatial Pyramid Pooling (ASPP) to effectively capture multi-scale 

information crucial for accurate segmentation. The resulting features are concatenated and further 

refined using 1×1 convolutions, yielding feature maps enriched with essential contextual details for 
precise segmentation. 

The decoder in DeepLabv3+ upscales the low-resolution feature maps generated by the encoder to 

recover the spatial dimensions of the original input. The decoder generates a dense pixel-wise prediction 
map, where each pixel is assigned a class label corresponding to the objects present in the image. To 

achieve this, the feature map output from the encoder undergoes a 4× upsampling using bilinear 

interpolation. The upsampled feature map is subsequently concatenated with the corresponding low-

level features extracted earlier by the encoder, after applying a 1×1 convolution to enhance 

dimensionality. A subsequent 3×3 convolution refines the features, and a final 4x upsampling restores 

the feature map to the original resolution, producing the final segmentation output. 
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Figure 2: Schematic diagram of the DeepLabv3+ architecture used for brain tumor segmentation. The 

input to the model consists of three MRI modalities (T1CE, T2, and FLAIR), The backbone model 

ResNet is followed by an ASPP module. The output from the ASPP module is further refined using a 
decoder module that upsamples the feature maps to the original input resolution, producing a detailed 

segmentation map., and the output is a segmented map indicating tumor regions. 

3.3.  Dataset 
The objective of this study is to assess the effectiveness of the DeepLabv3+ model in brain tumor 

segmentation using the BraTS2020 dataset, which comprises imaging data from real patients. This 

dataset includes 369 samples, each with four distinct MRI modalities: T1, T1CE, T2, and FLAIR. Since 

the pre-trained DeepLabv3+ model is designed to accept three-channel RGB inputs, we selected the 
T1CE, T2, and FLAIR modalities as the input channels for our model. The input images were resampled 

to a resolution of 240 x 240 pixels, maintaining a three-channel structure. The corresponding 

segmentation label were utilized as the ground truth for model training and evaluation. 

4.  Experimental Setup 

4.1.  Data Preprocessing 

The input data consists of T1CE, T2, and FLAIR modalities, resized to 240x240 pixels. The images 
were normalized by subtracting the dataset's mean and dividing by its standard deviation. 

4.2.  Model Architecture 

We utilized the DeepLabv3+ architecture with a ResNet-50 backbone pre-trained on ImageNet. The 

model was adapted for multi-class brain tumor segmentation with three input channels and one output 
segmentation map. 

4.3.  Optimization and Learning Rate Strategy 

The AdamW optimizer with an initial learning rate of 0.001 was applied to the model. To ensure efficient 
training and prevent overfitting, we employed a polynomial learning rates strategy, where the learning 

rate gradually decreases according to the following function: 

lr = baselr × ( 
1−epocℎ

numepocℎ
)

power

(2) 
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Where the lr denotes the updated learning rate, base_lr refers to the base learning rate, epoch indicates 

the number of iterations, num_epoch is the maximum iteration limit, and power regulates the curve's 

shape. In this study, the power is set to 0.9 for maintaining a high learning rate at the start of training 
and for avoiding local minima. 

4.4.  Training Procedure 

The training procedure was conducted on the BraTS2020 dataset, with 315 training samples, 17 
validation samples, and 37 test samples. The model was trained for a total of 100 epochs using a batch 

size of 16. Early stopping was implemented using the validation Dice score, allowing for a patience of 

10 epochs to avoid overfitting. 

4.5.  Evaluation Metrics 
In this study, the evaluation of the model's performance was conducted using the Dice Coefficient. 

However, Dice Loss alone may not be the best choice for the loss function. Although Dice Loss is 

effective in handling class imbalance, it may introduce gradient instability during backpropagation, 
which can impair the model's convergence and overall training stability. To address these issues, we 

employed a hybrid loss function that integrates the Dice Coefficient and Cross-Entropy Loss. This 

combined approach capitalizes on the ability of loss function to accurately segment small regions while 
leveraging the smoothing properties of Cross-Entropy Loss to stabilize the training process. The 

composite loss function is defined as follows: 

Dice Cofficient(A, B) =
2|A∩B|

|A|+|B|
(3) 

Here, A represents the pixels in the predicted segmentation, while B denotes the set of pixels in the 
ground truth segmentation. Usually, the denominator contains a small number to prevent the value from 

being 0. 

Cross Entropy Loss =
1

N
∑ Lii =

1

N
∑ ∑ y

ic
log(p

ic
)M

c=1i (4) 

where M is the number of classes, y
ic

 is an indicator function that equals 1 if the element belongs to 

class c, and p
ic

 represents the predicted probability that the observation belongs to class c. 

Total Loss = Cross Entropy Loss + Dice Cofficient (5) 

By combining these two loss functions, our approach aims to balance the strengths of each, enhancing 

both the stability of the training process and the overall segmentation accuracy of the model. 

Optimizer: The AdamW optimizer was used, with a weight decay coefficient of 1e-4 to prevent 
overfitting. This opn odify the learning rates for each individual parameter, which is particularly useful 

in deep learning tasks with high-dimensional data. 

Epochs: The model was trained for 200 epochs, as this number of epochs was found to be sufficient 
for the model to converge while avoiding overfitting. 

Dropout Rate: A dropout rate of 0.1 was applied in the fully connected layers of the network. This 

regularization method was employed to mitigate overfitting by randomly dropping units during training, 
encouraging the network to learn more robust features 

Evaluation of different learning rate update strategies: 

This experiment also evaluates the performance of different learning rate strategies, which is shown 

in table 1.  

Table 1. The results of employing different learning rate strategies. 

Strategy Related Parameters Dice Coefficient 

Poly Power = 0.9 0.93 

Step Step size = 30 0.87 

Exponential Decay New_lr = 0.9×lr 0.78 

Cosine Annealing  T_Max = 50 0.92 
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5.  Conclusion 

In this study, we introduce a novel method for MRI image segmentation that leverages the deep learning 

principles of convolutional networks and data augmentation to make the most of the available labeled 
images .The DeepLabv3+ architecture utilizes an encoder-decoder structure designed to capture both 

low-level and high-level features. The encoder efficiently extracts spatial information, while the decoder 

reconstructs precise segmentation maps, enabling the model to achieve robust performance. Training 
was conducted over 200 epochs on a high-performance server equipped with an NVIDIA RTX 3090 

GPU (24GB). The model demonstrated superior segmentation accuracy, achieving an average Dice 

score of 0.935 on the testing dataset. For comparison, the benchmark model, U-Net, was evaluated on 

the same dataset and achieved a Dice score of 0.932, underscoring the efficacy of the DeepLabv3+ 
architecture for MRI segmentation tasks. 

However, the drawback of the model still exists. The convolution operation still processes 

information from each modality independently, making it unable to explicitly model the 
complementarity and interaction between different modalities. The convolution operation is limited by 

its local receptive field, which may not effectively capture long-range dependencies between modalities 

or fully integrate global features. 
Future research will focus on exploring more advanced techniques for improving brain segmentation 

accuracy. Currently, most methodologies primarily focus on two-dimensional feature extraction. 

However, MRI data consist of 3-dimensional information with more complex relationships among 

neighboring layers. Evaluating inter-slice dependencies may significantly enhance segmentation 
performance, as 3D volumetric data capture richer spatial context. Current segmentation models that 

process individual slices often overlook this information, and even in models incorporating adjacent 

slices, the inter-slice context may still be underutilized. Addressing these limitations by integrating 3D 
data more effectively will be a key focus in our future work. 
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