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Abstract. Surrogate models are widely used in engineering predictions to reduce computational 
costs and improve efficiency, especially in complex systems where direct simulations are time-

consuming and expensive. This paper explores the application of four commonly used surrogate 

models: Response Surface Methodology (RSM), Radial Basis Function (RBF), Kriging, and 

Support Vector Machine (SVM). Each model's strengths, weaknesses, and suitability for various 

engineering scenarios are discussed. RSM is shown to be effective for process optimization in 

systems with moderately nonlinear responses. RBF excels in real-time predictions and nonlinear 

systems, while Kriging offers high accuracy in spatial data prediction along with uncertainty 

quantification. SVM demonstrates strong performance in high-dimensional classification tasks. 

Additionally, this paper addresses strategies for reducing computational costs when applying 

these models, including the use of efficient optimization techniques. The findings suggest that 

the selection of an appropriate surrogate model depends heavily on the specific application and 

the complexity of the system being modeled. Future research could focus on improving the 
computational efficiency of these models, especially for large datasets. 

Keywords: Surrogate models, engineering predictions, response surface methodology, radial 

basis function, kriging, support vector machine. 

1.  Introduction 

In the process of engineering design and optimization, accurate predictions are crucial to ensuring the 

performance and safety of systems. However, complex engineering systems often require time-
consuming and costly computations, particularly during simulations and experiments. Therefore, the 

development of surrogate models capable of rapidly predicting system responses has become an 

effective solution. By constructing surrogate models, researchers can approximate system behavior 

based on existing data, reducing the number of expensive computations and improving design efficiency. 
These models are widely used in fields such as aerospace, civil engineering, energy, and manufacturing, 

significantly enhancing the efficiency of design and optimization processes. 

Surrogate models, also known as metamodels or proxy models, are mathematical tools used to 
accelerate engineering predictions by simplifying the computation of complex systems. Common 

surrogate models include Response Surface Methodology (RSM), Radial Basis Function (RBF), Kriging, 

and Support Vector Machine (SVM). These models efficiently predict system responses based on 
limited data and can be applied to complex multidimensional problems. Each surrogate model has its 
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strengths and weaknesses in terms of performance, computational efficiency, and application scenarios. 

This paper discusses the application of these surrogate models in various engineering prediction contexts. 

2.  Types of surrogate models and their applications 

2.1.  RSM 
RSM is widely used in optimizing industrial processes where multiple input variables influence the 

outcome. For example, it is commonly applied in manufacturing, chemical engineering, and 

pharmaceutical development to find optimal process conditions (e.g. temperature, pressure, 
concentration) that maximize or minimize a desired output (yield, quality, cost). RSM is valuable in 

situations where experimental trials are expensive or time-consuming. It allows researchers to design 

efficient experiments by systematically varying inputs and observing their effect on the output. This is 

especially useful in quality improvement initiatives or product design, where understanding the 
interaction between multiple factors is key. It is used in mechanical and civil engineering for creating 

models that predict system behavior (e.g., material strength, structural response) based on input variables. 

RSM helps in approximating complex functions where a precise relationship between input and output 
is unknown but can be modeled empirically. 

RSM is particularly useful when the relationship between inputs and the response variable is 

nonlinear. By fitting a polynomial equation (often quadratic), RSM captures the curvature in the data to 
describe the response surface effectively. RSM is designed to make efficient use of experimental data. 

It provides a systematic approach for exploring the effects of multiple factors and their interactions 

without needing a large number of experiments. One of RSM's strengths is in optimization finding the 

set of input values that yield the best output. It can also perform sensitivity analysis, identifying which 
factors most significantly impact the response variable. RSM often involves graphical methods, such as 

contour plots or response surfaces, to visualize the relationship between input variables and the response. 

This makes it easier for engineers and researchers to interpret and communicate the findings. RSM 
assumes that the underlying relationships can be approximated by low-degree polynomials, typically 

quadratic. While this works well for moderate levels of complexity, it may struggle with highly complex 

or chaotic systems, leading to inaccuracies if the model is not properly fitted. 

2.2.  RBF 
The RBF model has a wide range of applications in optimizing real-time monitoring and prediction in 

the ship design process. The RBF model for ship design optimization facilitates the real-time monitoring 

and prediction work as the ice resistance values are estimated very fast under different configurations 
of design variables. This work provides support and aids for ship design prediction with a view to 

improving design efficiency while ensuring improved design accuracy. The computational performance 

has been greatly improved, increasing the efficiency of the design process, shortening the design cycle 
and reducing design costs. During the real-time monitoring and prediction process, the RBF model plays 

a key role in improving navigation safety by instantly predicting the ice resistance as the ship passes 

through the ice area. The RBF model can be used to predict changes in ice resistance based on continuous 

monitoring of the ship's navigation status, combined with a number of parameters of the surrounding 
environment, to provide the ship's captain with information to formulate a better navigation strategy. 

Unlike global methods such as polynomial regression, RBF has a localized influence, meaning each 

basis function only significantly affects predictions in a certain region around its center. This makes 
RBF highly adaptable to local variations in data, capturing fine-grained patterns in complex systems. 

One of the key strengths of RBF is its ability to generate smooth, continuous surfaces from discrete data 

points, making it ideal for applications like terrain modeling, surface reconstruction, and fluid dynamics. 

2.3.  Kriging 

Kriging was originally developed for geostatistics and is widely used for interpolating and predicting 

values in mining, oil and gas exploration, and environmental monitoring. It can predict unknown values, 
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such as mineral concentrations or pollutant levels, based on spatially distributed data points. Kriging is 

often used as a surrogate model (or metamodel) in aerodynamics, structural engineering, and fluid 

dynamics. It helps approximate expensive-to-evaluate simulations by predicting responses like pressure 

distributions, temperature fields, or stresses across different designs, significantly reducing computation 
time in optimization problems. Kriging is ideal for scenarios requiring both prediction and uncertainty 

quantification. It is commonly used in risk analysis and safety assessments, where it’s crucial not only 

to predict outcomes but also to understand the confidence or uncertainty in those predictions. For 
example, in climate modeling or environmental impact assessments, Kriging provides a means of 

evaluating the reliability of predictions. 

Kriging is one of the most accurate methods for spatial interpolation because it incorporates both the 

distance between known data points and the overall spatial correlation. This allows it to make smooth 
and realistic predictions that honor the observed data while minimizing error. A distinctive feature of 

Kriging is that it provides not only a prediction but also an estimation of the uncertainty (variance) 

associated with that prediction. This makes it especially valuable in fields where understanding the 
confidence in predictions is critical, such as resource estimation in mining or environmental risk 

assessment. Although highly accurate, Kriging can be computationally intensive, especially when 

working with large datasets [1]. The complexity arises from the need to solve a system of equations 
based on the covariance matrix, which grows with the number of data points. 

2.4.  SVM 

SVM is widely used in binary and multi-class classification tasks, making it ideal for applications in 

image recognition, text categorization, bioinformatics, and handwriting recognition. It excels in 
distinguishing between classes by finding the optimal hyperplane that separates data points. SVM can 

also be applied to regression problems, where it predicts continuous values. SVR is used in fields like 

financial forecasting, energy load prediction, and environmental modeling to predict values based on 
complex datasets. SVM is effective in detecting outliers or anomalies, making it suitable for applications 

like fraud detection, network intrusion detection, and fault detection in engineering systems. 

One of the major strengths of SVM is its ability to handle high-dimensional data efficiently [2]. This 

makes it ideal for tasks where the number of features is large compared to the number of data points, 
such as in genomics or text classification. SVM tends to perform well in cases where the number of 

dimensions exceeds the number of samples, as it relies on maximizing the margin between classes. This 

characteristic helps SVM generalize well to new data, particularly in smaller datasets with complex 
boundaries. SVM works best when there is a clear margin of separation between classes. In cases where 

the data is highly overlapping or noisy, other models like Random Forests or Neural Networks may 

perform better. 

3.  Comparison of surrogate models 

3.1.  Models 

3.1.1.  RSM. RSM is a statistical technique used to explore the relationships between one or more 

response variables (outputs) and several input variables (factors). It is typically used for optimizing 
processes by fitting a regression model, usually a second-order polynomial model, to the data. The 

general formula for RSM is as below Equation 1: 

𝑦 = 𝛽0 +∑ 𝛽𝑖
𝑘
𝑖−1 𝑥𝑖 +∑ 𝛽𝑖𝑖

𝑘
𝑖=1 𝑥𝑖

2 +∑ 𝛽𝑖𝑗𝑖<𝑗 𝑥𝑖𝑥𝑗 + 𝜀 (1)  

RSM offers the advantage of efficiently optimizing multi-factor systems by reducing experimental 

runs, providing visual insights through response surface plots, and focusing on local optimization. 

However, its reliance on quadratic models limits it to local regions, and the model complexity increases 
with more factors, potentially leading to overfitting. Additionally, RSM's assumptions about error 

normality and model continuity may not suit all systems, particularly highly nonlinear or global ones. 
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3.1.2.  RBF. RBF is a real-valued function whose value depends only on the distance from a central 

point, often used in machine learning and interpolation. RBFs are commonly employed in neural 

networks, support vector machines (SVM), and function approximation. The general form of an RBF is 

shown as: 

Φ(∥ x − c ∥) (2) 

RBFs are highly flexible for function approximation and interpolation, offering the advantage of 

universal approximation and local influence, making them effective for smooth, localized modeling. 

They are also easy to implement in neural networks, often requiring fewer training examples. However, 
RBFs can become computationally expensive as the dataset grows, and their performance is sensitive to 

parameter choices like the spread in Gaussian RBFs, which can be challenging to optimize. Additionally, 

they may overfit noisy data if not properly regularized, making parameter tuning crucial for effective 
use. 

3.1.3.  Kriging. Kriging is a geostatistical interpolation method used to predict values of a spatially 

distributed variable at unmeasured locations based on observed data points. It is widely applied in fields 

such as geostatistics, environmental science, mining, and meteorology for tasks like mapping and spatial 
prediction. Kriging not only estimates the variable at unknown points but also provides an estimate of 

the error or uncertainty associated with each prediction. 

The general Kriging model is shown as Equation 3: 

𝑍(𝑠) = 𝜇(𝑠) + 𝜀(𝑠) (3) 

Kriging offers the advantage of providing the best linear unbiased predictions by accounting for 

spatial autocorrelation, making it more accurate than simpler interpolation methods. It also estimates 
prediction uncertainty, which is valuable for decision-making and risk assessment. However, Kriging is 

computationally intensive, especially with large datasets, and its accuracy heavily depends on correctly 

estimating the variogram. It can also be sensitive to outliers and requires expertise to apply and interpret, 

making it more complex than other spatial interpolation methods. 

3.1.4.  SVM. SVM is a supervised machine learning algorithm primarily used for classification tasks but 

can also be applied to regression problems. It works by finding a hyperplane that best separates data 

points into different classes in a high-dimensional space. SVM aims to maximize the margin between 
the hyperplane and the nearest data points from each class, which are called support vectors. The larger 

the margin, the better the generalization ability of the model. 

For linearly separable data, SVM solves the following optimization problem as shown in Equation 

4: 

Minimize 
1

2
∥ 𝐰 ∥2  subject to𝑦𝑖(𝐰

𝑇𝐱𝑖 + 𝑏) ≥ 1 ∀𝑖 (4) 

SVM excel in handling high-dimensional data and creating clear decision boundaries by maximizing 

the margin, reducing the risk of overfitting. They are highly flexible due to the use of kernel functions, 
which allow for the effective handling of non-linear data according to Table 1. However, SVMs can be 

computationally expensive, especially with large datasets, and require careful tuning of parameters like 

the regularization term and kernel settings for optimal performance. Additionally, SVM models, 
particularly with non-linear kernels, can be difficult to interpret. 
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Table 1. Comparison of Surrogate Models. 

Model Accuracy 
Computational 

Efficiency 
Best Engineering Scenarios 

RSM Moderate High 
Process optimization in chemical and 
manufacturing processes 

RBF 
High for nonlinear 

systems 

Moderate (Low 

with large data) 

Real-time monitoring and optimization tasks 

(e.g., ship design) 

Kriging 
Very High (spatial 
data) 

Low (large 
datasets) 

Geostatistics, resource estimation, 
aerodynamic design 

SVM 

High 

(complex/high-dim 
data) 

Moderate to Low 

(large datasets) 

Classification, fault detection, image 

recognition, medical diagnosis 

3.2.  Scenario-specific applications 

Recent advancements in the application of Artificial Neural Network (ANN)-based proxy models have 

shown remarkable success in various engineering prediction scenarios. Musayev, K. applied an ANN-
based proxy model to optimize well placement for pressure management in Geological Carbon Storage 

(GCS). The model's effectiveness was demonstrated by optimizing the locations of CO2 injection and 

brine extraction wells in the Pohang Basin's upper aquifer, where the best-performing ANN model was 
selected through rigorous testing. This model, combined with a genetic algorithm, identified the optimal 

well locations to maximize cumulative CO2 injection [3]. Similarly, Aydin, H. developed a proxy model 

that estimates reservoir pressure and temperature using wellhead data such as pressure, temperature, and 

non-condensable gas (NCG) levels. This model was trained with a comprehensive dataset generated 
from a calibrated wellbore simulator [4]. In another study, Panjalizadeh, H. introduced a dynamic ANN-

based proxy model to optimize steam injection processes in heavy oil reservoirs. By coupling a transient 

ANN with a genetic algorithm, the study successfully identified the optimal steam injection rate, steam 
quality, and injection timing. These studies underscore the versatility and effectiveness of ANN-based 

proxy models in addressing complex engineering challenges, providing a robust framework for 

optimizing various processes [5]. 

3.3.  Optimization of surrogate models 

3.3.1.  Parameter tuning. Optimizing surrogate models from the perspective of parameter tuning can be 

summarized in Table 2. 

Table 2. Surrogate models’ optimization. 

Model Parameter Types Optimization Techniques Common Applications 

RBF 
Kernel parameters, 
Regularization terms 

Grid Search, Random 

Search, Gradient-Based 

Optimization 

Real-time prediction, non-
linear regression 

RSM 
Factors in experimental 
design, Response surface 

parameters 

Central Composite Design, 
Steepest Descent, Newton’s 

Method 

Process optimization, 

experimental design 

Kriging 
Covariance function 
parameters, Noise 

variance 

Maximum Likelihood 
Estimation, Bayesian 

Optimization 

Spatial data modeling, 

geostatistics 

SVM 
C Parameter, Kernel 
parameters (e.g., gamma) 

Grid Search, Random 
Search, Cross-Validation 

Classification, pattern 
recognition, regression 
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3.3.2.  Reducing computational costs. Reducing computational costs is essential for efficient model 

optimization, especially when dealing with complex models or large datasets [6]. To achieve this, 

several strategies can be employed. First, choosing efficient algorithms, such as Stochastic Gradient 

Descent (SGD) instead of full-batch gradient descent, can significantly cut down on computation time 
by processing smaller data subsets [7]. Simplifying models through feature selection, model pruning, or 

opting for simpler models can also reduce complexity and computational demands. Efficient data 

handling techniques, including data sampling and compression, help manage large datasets effectively. 
Additionally, leveraging parallel and distributed computing resources, such as multi-core processors, 

GPUs, or cloud-based solutions, can accelerate computations. For model optimization, techniques like 

Bayesian optimization for hyperparameter tuning and early stopping during training can further 

minimize computational costs [8]. Implementing caching to store intermediate results and reusing pre-
trained models or applying transfer learning can also contribute to cost reduction. Specifically for RBF 

models, approximate kernel evaluations and sparse approximations can improve efficiency, while RSM 

can benefit from efficient experimental design techniques [9]. In Kriging models, low-rank 
approximations and sparse Gaussian processes help handle large-scale data, and for SVM, approximate 

methods and incremental learning techniques can reduce the computational burden [10]. By combining 

these approaches, significant reductions in computational costs can be achieved, enhancing overall 
efficiency and performance. 

4.  Conclusion 

This paper analyzed and compared four commonly used surrogate models: RSM, RBF, Kriging, and 

SVM. Each model exhibits specific strengths based on the engineering application. RSM is highly 
efficient for optimizing processes with smooth, low-order polynomial relationships, making it suitable 

for smaller, well-behaved systems. RBF demonstrates strong performance in capturing nonlinearities 

and local variations, which is advantageous for real-time prediction tasks, although its efficiency 
decreases with larger datasets. Kriging stands out for its high accuracy in predicting spatially correlated 

data and its ability to quantify uncertainty, but its computational demands limit its use with larger 

datasets. SVM is effective in high-dimensional classification and regression tasks, particularly when 

clear margins exist between classes, though its computational cost becomes a challenge with large 
datasets. Overall, the selection of the appropriate surrogate model depends on the system's complexity 

and the specific requirements of the engineering problem. 

Several future research directions could further enhance the performance and applicability of 
surrogate models in engineering predictions. Improving computational efficiency is a primary focus, 

especially for handling large datasets and complex systems. Techniques such as sparse approximations 

for Kriging and more efficient kernel evaluations for RBF could help address this challenge. Another 
promising area is the integration of emerging machine learning techniques, such as deep learning, which 

could enhance the predictive power and generalization capabilities of surrogate models. Additionally, 

developing adaptive surrogate models that can adjust dynamically to new data or changing system 

conditions is crucial for applications involving real-time monitoring and evolving environments. 
Multifidelity approaches that combine high-fidelity, high-cost simulations with lower-fidelity, lower-

cost models could also strike a balance between accuracy and computational efficiency. By pursuing 

these directions, the potential for surrogate models to solve increasingly complex engineering problems 
will be significantly expanded. 
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