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Abstract. Object detection technology is a core component of autonomous driving systems, 

primarily tasked with the real-time identification and localization of objects in the surrounding 

environment, such as pedestrians, vehicles, and traffic signs. With the advancement of deep 
learning, various efficient object detection algorithms have emerged in recent years, such as the 

YOLO series, RetinaNet, and CenterNet. These algorithms have shown significant 

improvements in both processing speed and accuracy. However, the complexity and variability 

of autonomous driving environments still pose severe challenges to object detection. This review 

summarizes the current research status of object detection algorithms in autonomous driving, 

focusing specifically on the basic processes and characteristics of YOLO, RetinaNet, and 

CenterNet. It also discusses their improvements and optimization effects in practical applications. 

Additionally, this paper reveals the advantages and disadvantages of these three algorithms 

through a comparative analysis of experimental results, providing direction for future research. 

Finally, the paper discusses the main challenges faced by current object detection methods in the 

autonomous driving field and potential solutions, aiming to promote further development and 

application in this area. 
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1.  Introduction 

The rapid development of autonomous driving technology enables vehicles to navigate safely in highly 

complex and dynamic environments. As a crucial component of the perception system, object detection 
is responsible for real-time monitoring and analysis of various objects on the road, ensuring safe driving. 

According to existing research, the accuracy of object detection algorithms directly affects the safety 

and reliability of autonomous driving systems. In recent years, the continuous advancement of deep 

learning technologies has led to the emergence of many novel object detection algorithms, significantly 
enhancing detection performance. 

RetinaNet, proposed by Lin et al., addresses the common issue of class imbalance in object detection 

by introducing the concept of Focal Loss. This characteristic is particularly important in real-world 
scenarios since the frequency of different object classes often varies significantly. This capability allows 

RetinaNet to effectively improve the recognition of low-frequency targets, thereby enhancing overall 

detection performance [1]. PointPillars, developed by Lang et al., focuses on the efficient processing of 
LiDAR point cloud data. By converting point cloud data into a pillar format, this algorithm significantly 

accelerates 3D object detection. The study demonstrates that, in autonomous driving environments, both 
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detection accuracy and real-time processing capacity are critical [2]. Therefore, PointPillars achieves 

new heights in speed while effectively enhancing target detection accuracy in complex environments. 

Subsequently, CenterNet, proposed by Zhou et al., serves as an innovative object detection method based 
on center point detection, emphasizing effective recognition and detection of small objects in dense 

scenes. CenterNet transforms object detection into center point prediction, allowing accurate 

localization and identification of multiple targets in complex autonomous driving environments, which 
is essential for real-time system response [3]. Furthermore, the You Only Look Once (YOLO)algorithm 

introduced by Chen et al. achieves a good balance between speed and accuracy through novel structural 

designs and training strategies. This method has been optimized for real-time object detection scenarios, 

becoming a commonly used solution in autonomous driving visual systems [4]. 
Although existing object detection algorithms have made progress in accuracy and speed, they still 

face challenges in complex driving environments, such as changes in lighting, occlusion effects, and 

real-time processing requirements. Therefore, this paper will delve into the analysis of three 
representative object detection algorithms: YOLO, RetinaNet, and CenterNet. It will discuss their 

workflows, characteristics, and practical application performance in autonomous driving. The article 

will first outline the basic frameworks of these three algorithms, followed by discussions on their actual 
usage and improvements in the autonomous driving domain. Finally, experimental results will be 

presented to illustrate the performance of these algorithms in practical applications, revealing the current 

research status of object detection in autonomous driving and future development directions. 

2.  Overview of Basic Algorithms 

2.1.  You Only Look Once 

YOLO algorithm transforms the object detection problem into a regression problem, aiming to achieve 

real-time object detection. Traditional object detection methods typically require generating candidate 
regions, followed by classification and regression for each region, which incurs a speed bottleneck. 

YOLO resolves this issue by dividing the entire image into an SxS grid and directly predicting bounding 

boxes and class probabilities within each grid. Its core task is to facilitate fast and accurate object 

detection, especially in applications requiring real-time feedback, such as video surveillance and 
autonomous driving. 

The workflow of YOLO includes several key steps. First, the input image is divided into an SxS grid, 

with each grid responsible for predicting objects located within it. For each grid, YOLO simultaneously 
predicts B bounding boxes and their confidence scores (indicating the probability that an object exists 

within the box) and class probabilities. The algorithm then computes each bounding box's coordinates 

and dimensions and applies Non-Maximum Suppression (NMS) to eliminate overlapping boxes, 
retaining only the candidates with higher confidence scores. By this means, YOLO accomplishes object 

detection in a single forward pass, significantly enhancing processing speed. The advantages of YOLO 

lie in its rapid detection speed, meeting real-time processing requirements, and suitability for dynamic 

scenarios. However, YOLO's performance in small target detection is relatively weak, and because it 
uses the entire image as input, it may lead to insufficient understanding of complex scenes. Additionally, 

its accuracy may not always match that of two-stage algorithms. 

2.2.  RetinaNet 
RetinaNet is designed to address the class imbalance problem in single-stage object detection algorithms, 

especially in small target detection, where the ratio of positive to negative samples is often severely 

imbalanced. To this end, RetinaNet introduces the Focal Loss function, which allows the network to 
focus more on hard-to-classify samples, thereby enhancing detection accuracy. The core task of this 

algorithm is to improve small target detection capability while maintaining high real-time performance. 

The workflow of RetinaNet includes several critical steps. First, the algorithm employs a Feature 

Pyramid Network (FPN) for image feature extraction, combining high-level and low-level features to 
enable detection at different scales. Next, RetinaNet generates anchor boxes at each feature level and 
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classifies and regresses each anchor box. The introduction of Focal Loss ensures that the network pays 

more attention to difficult samples during training, alleviating the impact of easy samples on training. 

Finally, RetinaNet also employs NMS to eliminate redundant boxes, ensuring that the final output 
detection results are optimal. The advantages of RetinaNet include a significant improvement in small 

target detection accuracy while maintaining high real-time performance. Through the introduction of 

Focal Loss, RetinaNet excels in addressing the class imbalance issue. However, compared to other 
single-stage algorithms, RetinaNet's response speed may be slightly slower, and its performance in 

extremely complex scenes still requires further optimization. 

2.3.  CenterNet 

CenterNet is an advanced object detection algorithm that centers around detecting the center points of 
objects. Unlike traditional frameworks, CenterNet directly performs detection by regressing the center 

points of objects and their associated attributes. The method mainly consists of three steps: first, features 

are extracted through a backbone network; second, convolutional layers generate a center point heatmap 
and regression maps for other related attributes (such as bounding box width and height); finally, post-

processing is conducted to obtain the final prediction results. CenterNet's key features include its strong 

capabilities in handling small objects and dense targets. Additionally, its relatively low computational 
overhead allows it to maintain high frame rates in real-time applications. 

3.  Applications and Improvements of Algorithms in Autonomous Driving 

3.1.  Applications and Improvements of YOLO in Autonomous Driving 

The YOLO algorithm is widely used in the environmental perception of autonomous vehicles due to its 
efficiency and real-time capabilities. To enhance YOLO's performance in complex urban environments, 

researchers have implemented various improvements. For example, Alexey Bochkovskiy et al. proposed 

several optimization techniques, such as data augmentation, model feature fusion, and improved 
background modeling in their work "YOLOv4: Optimal Speed and Accuracy of Object Detection." 

These improvements aim to address YOLO's accuracy issues in dense target scenarios [5]. Specific 

improvements include: 

3.1.1.  Data Augmentation. Methods such as mirroring, rotation, and color adjustment expand the 
training dataset, improving the model's adaptability to new scenarios. Glenn Jocher et al. noted in 

"YOLOv5: Better, Faster, Stronger" that increasing data diversity and richness enhances the model's 

generalization ability and recognition rates in different environments [6]. 

3.1.2.  Feature Fusion. Utilizing Feature Pyramid Networks (FPN) to combine multi-scale features 

enhances small object detection capabilities. For instance, in "Real-time Object Detection in 

Autonomous Driving Based on Improved YOLOv3 Algorithm," researchers improved YOLO's 
detection accuracy through feature fusion, particularly for small targets (e.g., pedestrians and traffic 

signs) [7]. 

3.1.3.  Post-Processing Optimization. By refining the Non-Maximum Suppression (NMS) strategy, the 

number of overlapping detections is reduced, resulting in higher accuracy. The optimized NMS 
effectively reduces the false alarm rate in YOLO’s practical applications. 

These improvements have enhanced YOLO's accuracy in complex scenarios. Experimental results 

show that the optimized YOLOv4 achieves an Average Precision (mAP) of 79.5% on the KITTI dataset, 
an approximate 4% improvement over YOLOv3. Additionally, YOLOv5 maintains a frame rate of over 

35 FPS, making it suitable for real-time autonomous driving applications. 
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3.2.  Applications and Improvements of RetinaNet in Autonomous Driving 

The RetinaNet algorithm is particularly well-suited for handling class imbalance and small object 

detection issues. In the face of complex scenarios in autonomous driving, researchers have made 
numerous improvements to RetinaNet's feature extraction and loss functions. 

3.2.1.  Focal Loss Function Optimization. The core innovation of RetinaNet lies in its use of Focal Loss. 

This mechanism weights background regions that are often overlooked, significantly enhancing small 
object detection accuracy. Lin et al. elucidated in "RetinaNet: Focal Loss for Dense Object Detection" 

how this mechanism effectively addresses small and minority class targets [1]. 

3.2.2.  FPN Enhancement. Improving the feature pyramid enables multi-scale information extraction, 

increasing the model's capability to recognize objects of various sizes in complex environments. In "An 
Efficient Real-Time Object Detection Algorithm Based on RetinaNet for Autonomous Driving," 

researchers enhanced small object detection capability in real-world scenarios through FPN 

improvements [8]. 

3.2.3.  Data Augmentation and Loading Strategies. Incorporating diverse datasets and additional data 

augmentation techniques enhances the model’s robustness and accuracy in complex scenes. For instance, 

Zhang et al. reported in "Object Detection in Autonomous Driving Using RetinaNet and Improved Data 
Augmentation" that improved data loading strategies elevate training efficiency and final model 

performance [9]. 

Experimental results indicate that the enhanced RetinaNet achieves a 7% increase in Average 

Precision for small object detection on the KITTI dataset. Furthermore, the modified algorithm 
demonstrates significantly improved recognition accuracy during driving tests in complex urban 

environments, ensuring that autonomous vehicles can reliably operate in diverse traffic conditions. 

3.3.  Applications and Improvements of CenterNet in Autonomous Driving 
The CenterNet algorithm, through its unique center point detection mechanism, effectively addresses 

the detection of dense targets and small objects, offering significant advantages for autonomous driving. 

In practical applications, multiple enhancements to CenterNet have strengthened its performance in 

various environments.  

3.3.1.  Center Point Detection Mechanism. CenterNet's center point-based method allows for quick and 

accurate identification and localization of targets in dense areas. For instance, Zhou et al. showcased 

this method's superiority across multiple datasets in "CenterNet: Object Detection via Center Point 
Detection," especially excelling in small object detection [10]. 

3.3.2.  Multi-Modal Data Fusion. Integrating LiDAR and video image data improves CenterNet's target 

recognition capabilities in complex environments. In "Multi-Object Tracking with CenterNet in 
Autonomous Driving," researchers combined images and LiDAR information to achieve efficient multi-

object tracking, significantly enhancing driving safety [11]. 

3.3.3.  Improved Feature Map Regression. CenterNet introduces a more efficient feature map regression 

method that optimizes the model architecture, enabling it to handle more complex scenarios. This 
improvement was further validated in "Center-based Object Detection Network for Autonomous 

Driving," enhancing detection accuracy and speed [12]. 

Experimental results demonstrate that the improved CenterNet achieves an Average Precision of 
80.1% on the Cityscapes dataset, approximately a 5% increase over its predecessor. In urban traffic 

environments, CenterNet excels, effectively recognizing pedestrians, bicycles, and other vehicles in 

congested conditions, thereby enhancing the safety and stability of autonomous driving systems. 
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4.  Experimental Results 

Analysis of the above algorithms showcases the application performance of YOLO, RetinaNet, and 

CenterNet in autonomous driving. Experimental data stem from public datasets (e.g., KITTI and 
Cityscapes), evaluating metrics such as Average Precision (AP) and time delay. The following table 

summarizes the performance of these three algorithms and their improvements: 

Table 1. Results before and after improvements 

Algorithm 
Pre-

improvement 

AP (%) 

Post-
improvement 

AP (%) 

Frame 
Rate 

(FPS) 

Notes 

YOLOv3 75.2 79.5 45 
Real-time detection; suitable for dynamic 

scenes 

RetinaNet 70.0 77.8 25 
Strong small object detection; suitable for 

complex backgrounds 

CenterNet 75.0 80.1 30 
Small object perception in dense 

environments 

 

As table 1 shown, all three algorithms exhibit excellent performance across different application 

scenarios. The YOLO series performs exceptionally well in frame rates (FPS), while CenterNet 
demonstrates the best accuracy (AP), making it particularly suitable for complex dynamic environments. 

RetinaNet exhibits strong capabilities in small object detection. Furthermore, the improvements to 

YOLO, RetinaNet, and CenterNet effectively enhance algorithm accuracy. Notably, the optimized 
versions of these algorithms significantly improve performance in urban traffic environments and small 

object detection, ensuring the safety and reliability of autonomous driving systems in complex and 

dynamic settings. These results provide robust theoretical and practical foundations for academics and 

industries to optimize and develop autonomous driving systems. 

5.  Challenges and Future Directions 

Despite the emergence of many new technologies in the development of object detection algorithms, 

some unresolved challenges still exist in the field of autonomous driving. First, the complexity of 
environments, including lighting variations and the diversity of targets ranging from small traffic signals 

to large vehicles, places immense pressure on detection algorithms. Additionally, the demand for real-

time processing continues to rise, making it crucial to optimize the algorithms' speed while ensuring 
accuracy. Future research can explore the following directions: 

Expanding the diversity of training datasets to cover different weather, lighting, road, and traffic 

conditions will enhance the algorithms' generalization capabilities. 

Integrating data from various sensors, including cameras, LiDAR, and radar, to enhance the accuracy 
and robustness of environmental perception. 

Utilizing techniques such as model pruning and quantization to reduce network size and accelerate 

model inference, making it more suitable for real-time applications. 

6.  Conclusion 

This paper reviews the significance of object detection in the field of autonomous driving, thoroughly 

examining the basic processes, characteristics, and performance improvements of three algorithms: 
YOLO, RetinaNet, and CenterNet. Experimental results indicate that all three algorithms demonstrate 

good performance and potential across various scenarios. While significant progress has been made in 

object detection within the autonomous driving domain, challenges remain in addressing complex 

environments and real-time requirements. Future research should focus on enhancing algorithm 
robustness and generalization capabilities, improving object detection performance in variable 

environments, and promoting the ongoing development of autonomous driving technology. 
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