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Abstract. Sign language recognition is an important technology that makes it possible for 

ordinary people to be able to communicate with deaf people, fostering inclusivity and 

accessibility. The came out of deep learning technology has completely changed the field by 

enabling the automatic extraction and learning of hierarchical features from raw data, leading to 
significant improvements in recognition accuracy. This paper presents a comprehensive 

comparative analysis of different Convolutional Neural Network (CNN) architectures for 

recognizing American Sign Language (ASL) signs. Utilizing the sign language dataset, which 

contains 24 classes of ASL letters represented by 28x28 grayscale images, the author evaluated 

the performance of a Basic CNN, a Modified Residual Network (ResNet)-50, and a LeNet-5 

model. This study emphasizes the impact of architectural choices on recognition accuracy and 

computational efficiency. Results indicate that while ResNet-50 demonstrates superior accuracy, 

fluctuating significantly during initial training, the Basic CNN and LeNet-5 models offer greater 

stability with slightly lower accuracy. This work concludes that despite the initial challenges, 

deep learning models, particularly ResNet-50, show promise for ASL recognition, highlighting 

the need for diverse and enriched datasets to improve model reliability in real-world scenarios. 
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1.  Introduction 
For the deaf and hard of hearing community—which, according to the World Health Organization, 

makes up around 5% of the world's population—sign language is an essential form of communication 

[1]. This corresponds to more than 70 million individuals who use sign language as their main form of 
communication [2]. The importance of sign language extends beyond the deaf community, as it plays a 

crucial role in inclusive education, emergency services, and social interactions. The creation of precise 

sign language recognition systems has grown in importance as a result of the growing integration of 

technology into daily life. These systems provide a link between the hearing and deaf populations. 
Deep Learning (DL) and Convolutional Neural Networks (CNNs) have shown impressive results in 

a variety of computer vision applications, such as sign language detection [3]. These techniques have 

outperformed more conventional vector machine-based methods, mostly because of their capacity to 
automatically identify and extract hierarchical characteristics from unprocessed data [4]. Since CNNs 

were introduced, the accuracy of sign language recognition has significantly improved, which can 

effectively capture the spatial hierarchies in sign language movements [5]. 
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Past research has primarily focused on developing complex CNN architectures to enhance 

recognition rates. For instance, studies have explored the use of deeper networks, wider networks, and 

various regularization techniques to improve performance. However, Nonetheless, a still untapped topic 

is the comparison of various CNN models on the same sign language identification problem [6]. The 
purpose of this work is to close this gap by examining how different CNN architectures perform in terms 

of identifying signals in American Sign Language (ASL). 

This study introduces a comparative analysis of multiple CNN models, including ResNet, LeNet, and 
other convolutional neural networks, on a standardized dataset of ASL signs. This work emphasizes the 

importance of understanding how different architectural choices impact the recognition accuracy and 

computational efficiency. This research advances the area of sign language recognition while also 

shedding light on how well CNN models generalize to other challenges. 

2.  Method 

2.1.  Dataset and preprocessing 

Sign Language MNIST is used as the dataset. It is a contemporary reimagination of the classic MNIST, 
focusing on ASL gestures instead of handwritten digits [7]. It features 24 classes of ASL letters, each 

represented by 28x28 grayscale images. Designed for advancing computer vision techniques, 

particularly CNNs, the dataset stands out for its rigorous preprocessing. It is a powerful tool for gesture 
recognition research and applications since it can crop, grayscale, resize, and amplify images using 

filters, pixelation, brightness/contrast modifications, and rotations. 

The dimensionality of these datasets was then determined using the shape attribute, revealing that 

each dataset contained 7,995 instances with 785 features, where the first 784 features correspond to pixel 
intensities and the last feature represents the class label indicating the sign language letter. To meet the 

input requirements of convolutional neural networks, which necessitate three-dimensional image data, 

the feature matrices were reshaped to include an additional dimension for the channel, resulting in a 
shape of (images, height, width, channels). 

2.2.  Model architecture 

Three different neural network models were used in this study to tackle the issue of ASL recognition: a 

basic CNN model, a modified ResNet-50 model, and a classic LeNet-5 model. Each model was tailored 
and optimized for the specific characteristics of sign language recognition. In addition to this, this work 

also performed batch normalization on the three models, which led to a faster convergence rate of the 

models, simultaneously, the batch normalization acts as a regularization to a certain extent, which helps 
to reduce the overfitting phenomenon of the models. 

Multiple convolutional and fully connected layers make up the Basic CNN Model, which is intended 

to extract essential information from images of sign language. As shown in Figure 1, this model starts 
with grayscale images of size 28 by 28 pixels and goes through several convolutional and pooling layers 

before reaching fully connected layers that produce predictions for 26 different categories. 

The Modified ResNet-50 Model incorporates residual learning to enhance the training efficiency and 

performance of deep networks [8]. By stacking numerous convolutional and identity blocks, the model 
significantly increases network depth while mitigating the vanishing gradient problem through skip 

connections. This work adapted the original ResNet-50 architecture to suit the smaller ASL dataset, 

including adjustments to the network's input and output layers. 
The LeNet-5 Model, which consists of two convolutional layers, two pooling layers, and three fully 

connected layers, was chosen because to its simplicity and efficacy [9]. The design focus of LeNet-5 

lies in its ability to swiftly learn image features while maintaining low computational complexity. This 
work retained the core architecture of LeNet-5, making appropriate adjustments for the sign language 

dataset. 
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Figure 1. Architecture of basic CNN (figure credit: original). 

Sparse categorical cross-entropy was used as the loss function while training all models using the 

Adam optimizer, which was appropriate for the multi-class sign language recognition challenge [10]. 

Throughout the training process, each model underwent an equal number of training epochs, using the 
same batch size, and were run on identical hardware configurations to ensure fairness and comparability 

of the experimental results. 

2.3.  Evaluation Metrics 

The accuracy and effectiveness of the predictions were evaluated quantitatively using the following 
metrics to gauge the model's performance: 

Accuracy: This statistic, which shows the percentage of properly predicted occurrences relative to 

the total number of examples, is a basic measurement in classification tasks. It gives a clear indicator of 
the general accuracy of the model.  

Loss Function: The operator function called the loss function is used to quantify the degree to which 

the true values and the predicted values of the model deviate from each other. It serves as a key 

differentiator during the training phase, guiding the optimization process to minimize this difference.  
Confusion Matrix: In a classification model, a confusion matrix is a visualization table that counts 

the number of observations categorized in the incorrect category and the correct category and shows the 

results separately. The real category of the data is represented by each row in the confusion matrix, while 
the anticipated category is represented by each column. 

3.  Results 

After conducting 10 epochs for each model, a comparative analysis of the metrics was performed to 
evaluate their performance. The outcomes are illustrated in Figure 2 and Figure 3: 

This study presents an exhaustive comparative analysis of the accuracy and loss metrics of three 

architectures, Basic CNN, LeNet and ResNet, after 10 epochs. By comparing the performance metrics 

of these models, the purpose of this work is to evaluate several network designs for image recognition 
tasks in terms of accuracy and efficiency. 

In terms of accuracy, ResNet shows excellent performance in some training cycles, with its accuracy 

above 95% up to 95.69% in the third epoch (95.06%) and beyond, but its accuracy fluctuates greatly at 
the beginning of training, reflecting the relative instability of the model. In contrast, CNN and LeNet 

are slightly less accurate, but the highest accuracy rate still reaches 94.81% and 95.48% respectively, 

showing good recognition performance. It is worth noting that the accuracy of CNN fluctuates less 
during the training cycle, indicating that throughout training, the model is more stable. 
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Figure 2. Accuracy of different models during 

training (Figure credit: original). 

 
Figure 3. Loss of different models during 

training (Figure credit: original). 

In terms of loss metrics, ResNet shows a large range of fluctuations, ranging from 3.3655 to 0.4205. 

This variation shows how sensitive the model is to the loss function during training, and further 

adjustment of the learning rate and other hyperparameters may be required to optimize performance. 

For the two models, LeNet and CNN, which have low and stable loss values, they show high efficiency 
in the training process. 

In addition to this, the confusion matrices corresponding to the three models were generated, as 

demonstrated as seen, respectively, in Figure 4, Figure 5, and Figure 6. 

 

 

 

Figure 4. Confusion matrix of basic CNN 

model (Figure credit: original). 

 
Figure 5. Confusion matrix of LeNet model 

(Figure credit: original). 

According to the category accuracy formula Accuracy
𝑖

=
𝐶𝑖𝑖

∑ 𝐶𝑗𝑖
𝑛
𝑗=1

 , the accuracy of each category was 

calculated and it was found that the letter T labeled 18 had the lowest prediction accuracy among the 

three models, CNN: 51.56%, LeNet: 67.74%, and ResNet: 77.02%. 

In the CNN model, the letter T is incorrectly recognized as the letter H in the highest proportion, 
accounting for 56% of the recognition error rate; while in both the LeNet model and the ResNet model, 

the recognition error rate of the letter T is significantly declined, but in the LeNet model, there is still a 

part of the letter T being incorrectly recognized as the letter X, which accounts for 72.5% of the 
recognition error rate; this defect is greatly improved in the ResNet model, where only a small portion 
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of letter T is incorrectly recognized as letters L, H, and X. The comparison of the ASL gestures of these 

letters reveals that most of them have relatively similar features, which have a high indistinguishability. 

 

Figure 6. Confusion matrix of ResNet model (Figure credit: original). 

4.  Discussions 
In this study, the author provides an in-depth comparison of the behaviour of three neural network 

architectures, Basic CNN, LeNet, and ResNet, in the American Sign Language recognition task. ResNet 

performs well during the training process, especially in the third cycle when it reaches an accuracy of 
95.69%, which highlights its excellent recognition ability in the image recognition task. However, 

ResNet's accuracy fluctuates a lot in the initial period of training, which may be due to the sensitivity of 

its deep structure to gradient in the initialization stage, leading to the instability of the model in the early 

stage of training. In contrast, CNN and LeNet have slightly lower accuracies of 94.81% and 95.48%, 
respectively, but they show less fluctuation during the training cycle and show higher stability. 

The high performance of ResNet is attributed to its deep structure that captures more complex 

features, while the stability of CNN may be due to its relatively shallow network structure that makes 
the model easier to train. However, ResNet's instability in the early stages of training may require more 

tuning work, such as adjusting the learning rate and regularization strategy, to ensure stable training of 

the model. LeNet and CNN, although more accurate and stable, still need to improve their discriminative 

ability when dealing with categories with similar features, such as the letter T. The model's performance 
can be further improved by applying a more sophisticated network structure, which can be used to catch 

more complex features. 

In order to further improve the model performance, future research can consider the following 
directions: first, hyper-parameter tuning of ResNet, such as adjusting the learning rate, increasing 

regularization, or using more advanced optimization algorithms to reduce fluctuations at the beginning 

of training. Second, data enhancement strategies, such as rotation, scaling and color transformation, are 
implemented for all models to enhance the generalization ability of the models. In addition, existing 

network structures are optimized, e.g., by introducing attention mechanisms or exploring deeper network 

structures to enhance the model's capacity to capture intricate details. Finally, for categories with low 

recognition accuracy, the model's recognition ability can be improved by oversampling a few categories 
or using category weights. Future research is anticipated to further improve the behaviour of these 

models in tasks involving the recognition of American Sign Language with these avenues for 

improvement. 
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5.  Conclusions 

This study employs three models, Basic CNN, LeNet-5, and ResNet-50, with careful tuning of the 

models. Through batch normalization, the author effectively reduces the internal covariate bias, 

improves the training efficiency and stability of the models and lowers the possibility of overfitting. In 
addition, three evaluation metrics are applied, Accuracy, Loss function, and Confusion Matrix are used 

to examine and contrast the three models' respective performances as well as to track precise class 

accuracies. 
The experimental results show that ResNet exhibits excellent performance in the recognition task 

despite initial fluctuations. In contrast, CNN and LeNet are slightly less accurate, but their stability and 

lower training difficulty make them equally attractive for practical applications. These results offer 

insightful references for next studies on the recognition of sign language. 
Notwithstanding the findings of this study, the author recognizes that the diversity of the dataset is 

crucial for building more reliable models. Changes in skin tone, the distinction between left and right 

hands, adult compared to child hands, and environmental circumstances are among the variables that 
might affect how well the model performs in practical applications, but none of these are adequately 

covered by the current dataset. It is expected that in the future, more diverse and richer datasets will be 

available to improve the generalization and flexibility of the model. 
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