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Abstract. Electrocardiogram (ECG) diagnosis is pivotal in clinical practice, providing an 

essential means for early heart disease detection. However, traditional automated diagnostic 

approaches often face challenges such as limited accuracy, noise sensitivity, and inadequate real-

time performance. This paper proposes a novel solution utilizing Spiking Neural Networks (SNN) 

to address these challenges. This method combines Convolutional Neural Networks (CNN) with 

Leaky Integrate-and-Fire (LIF) spiking neurons, offering advantages like low energy 

consumption, high computational efficiency, and enhanced robustness, particularly in dealing 

with noise in ECG signals. The MIT-BIH Arrhythmia Dataset, a widely recognized resource for 

arrhythmia detection containing annotated ECG signals for various heart conditions, is utilized 

in this study. The results indicate that the proposed method achieves a 97.98% test accuracy, 

significantly surpassing traditional Long Short-Term Memory networks (LSTM)-based 

architectures. These findings underscore the effectiveness and potential of this approach in ECG 

signal analysis. 

Keywords: Spiking Neural Networks (SNN), Electrocardiogram (ECG) Signal Analysis, 
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1.  Introduction 

Electrocardiogram (ECG) is a crucial diagnostic tool for heart diseases, recording the heart’s electrical 

activity to detect abnormalities like arrhythmias and myocardial ischemia, emphasizing its clinical 

importance. [1]. With technological advancements, automated ECG analysis has become a research 

focus in cardiology. However, there remains room for improvement in both accuracy and robustness [2]. 

Previous studies, such as the work of Avinash L. Golande and T. Pavankumar, have introduced CNN 

and LSTM-based approaches for automated ECG classification. While these methods perform well in 

most scenarios, they still struggle with noise robustness [3]. Another study employed LSTM for ECG 

signal analysis, effectively capturing the temporal features in ECG data. However, due to its high 

computational complexity and sensitivity to long-term dependencies, this approach leads to increased 

computational costs [4]. 

This paper presents a novel approach using SNN to address the aforementioned challenges. The 

method merges CNN with LIF spiking neurons to enhance noise handling and improve classification 

performance in ECG signals. The following sections include a flowchart of the proposed method and a 

diagram of the neural network architecture, illustrating the design and structure. 
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The method’s design is based on a deep learning framework, particularly integrating CNN with SNN. 

The architecture combines convolutional layers and LIF spiking neurons to enhance feature extraction 

and classification performance for ECG signals. Adaptive learning rates and regularization strategies 

are employed to ensure robustness and efficiency when handling large-scale ECG data. 

This study's main contributions can be summarized as below: (1) A novel SNN-based framework, 

SNN Net, is proposed for ECG anomaly detection, which effectively addresses the noise issue in ECG 

signals during the data preprocessing stage using wavelet transform. (2) SNN Net achieves a test 

accuracy of 97.98% on the MIT-BIH Arrhythmia Dataset, outperforming traditional LSTM architectures. 

2.  ECG Signal Preprocessing 

The preprocessing of ECG signals is a crucial step in ensuring accurate diagnosis. One of the most 

effective methods for denoising ECG signals is the application of wavelet transform. This chapter will 

introduce the Application of Wavelet Transform and Denoising as well as how to process ECG datasets. 

2.1.  Dataset Attributes: Analysis of the MIT-BIH Arrhythmia Dataset 

Widely utilized for ECG-based arrhythmia detection, the MIT-BIH Arrhythmia Dataset consists of 48 

recordings from 47 individuals, captured using two leads at a sampling rate of 360 Hz. Derived from 

Lead II and Lead V1, the recordings have a 360 Hz sampling rate and are digitized at 11-bit resolution. 

Each record is manually annotated by cardiologists, identifying the R-peaks and various arrhythmia 

types. The dataset includes 15 different arrhythmia categories, with common types such as premature 

ventricular contraction (PVC), right bundle branch block (RBBB), left bundle branch block (LBBB), 

atrial premature contraction (APC), normal beats (N). Each record consists of approximately 108,000 

data points. Pre-processing and data augmentation are often necessary due to the imbalance in 

arrhythmia classes. The dataset is extensively used in deep learning applications and machine learning 

for arrhythmia classification and ECG signal analysis. [5].  

2.2.  Application of Wavelet Transform and Denoising 

Wavelet transform is highly effective in separating cardiac signals from noise. This method applies 

thresholding to attenuate noise, improving ECG signal quality and ensuring accurate analysis of cardiac 

dynamics. [6,7].In the proposed framework, The denoising process uses wavelet thresholding to remove 

noise while preserving the waveform's morphological characteristics. [7]. This preparatory step is 

crucial for ensuring that the ECG signals used in further analysis are as clean and accurate as possible, 

thereby improving the reliability of the diagnostic outcomes. 

 

Figure 1. Flowchart of the Proposed Method (Insert Flowchart) 
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Figure 2. Network Architecture Diagram (Insert Architecture Diagram) 

2.3.  Dataset Processing and Feature Extraction 

Processing ECG datasets is vital to ensure the accuracy and representativeness of cardiac activity in 

subsequent analyses. Given that ECG signals are often noisy and irregular, careful preprocessing is 

required to extract meaningful features for classification. The segmentation of ECG signals is 

particularly important as it allows for the identification of individual heartbeats within a continuous 

recording. These features often include temporal and morphological characteristics of the ECG 

waveform, which are essential for accurate diagnosis [8]. The use of time-frequency analysis methods, 

such as wavelet transform, can also enhance feature extraction by providing a more detailed 

representation of the signal's frequency content. Figure 3 illustrates the segmented heartbeats as depicted 

by Python.  

 

Figure 3. Segmented heartbeats from N and V classes in the MIT-BIH Arrhythmia dataset 

3.  Application and Limitations of the LSTM Model 

3.1.  LSTM Model Architecture Design 

The architecture features two bidirectional LSTM layers, each with 64 hidden units, designed to capture 

both short- and long-term dependencies in ECG signals. The first layer, with return sequences enabled, 

processes immediate temporal dependencies in both directions. [9]. 
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In each LSTM cell, the input gate controls the influence of the current input xt and the previous 

hidden state ht−1 on the cell state: 

it = σ(Wi ∙ [ht−1, xt] + bi) (1a) 

The forget gate regulates how much of the previous cell state Ct−1 is retained: 

ft = σ(Wf ∙ [ht−1, xt] + bf) (1b) 

Next, a candidate cell state ct is calculated to generate the new cell state: 

ct =  tanh(WC ∙ [ht−1, xt] + bC) (1c) 

The updated cell state Ct is a combination of Ct−1 and the candidate cell state, modulated by the 

forget and input gates.: 

Ct =  ft ∗ Ct−1 + it ∗ ct (1d) 

Finally, The output gate determines how much of Ct is transferred to the hidden state ht: 

ot = σ(Wo ∙ [ht−1, xt] + bo) (1e) 

ht is the LSTM cell's output, combining the output gate with the current cell state: 

ht =  ot ∗ tanh (Ct) (1f) 

The second LSTM layer continues this bidirectional processing to identify and capture longer-term 

trends within the signal. Following the LSTM layers, a fully connected Dense layer with a softmax 

activation function is applied, which maps the processed data to the final output [10]. This architecture 

is particularly well-suited for classifying various types of cardiac events, such as arrhythmias, by 

leveraging the temporal information contained in the ECG signals. The framework is illustrated in 

Figure 4. 

 

Figure 4. Architecture of the LSTM Model Used for ECG Signal Classification 

3.2.  Performance of LSTM in ECG Signal Classification 

The LSTM model was trained for 10 epochs with a batch size of 16, using two bidirectional LSTM 

layers and a softmax layer to classify ECG signals into five categories. It achieved 93.47% training 

accuracy, 94.36% validation accuracy, 94.65% test accuracy, and a test loss of 0.1786. Despite high 

accuracy, the model struggled with specific arrhythmias. 
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Table 1. Training and Validation Performance of LSTM Model on ECG Signal Classification 

Epoch Trian Loss Train Accuracy Val_Loss Val_Accuracy 

1 0.6301 0.8086 0.3341 0.8938 

2 0.3255 0.9002 0.2028 0.9435 

3 0.1972 0.9453 0.144 0.9612 

4 0.2051 0.9429 0.1767 0.9463 

5 0.1447 0.9604 0.1297 0.9688 

6 0.1294 0.9658 0.1011 0.9732 

7 0.6876 0.8015 0.6193 0.8045 

8 0.5323 0.8389 0.364 0.8943 

9 0.3391 0.9008 0.2413 0.9298 

10 0.2294 0.9347 0.1875 0.9436 

4.  Introduction of the SNN Model 

4.1.  Structure and Design of the SNN Model 

The architecture in our study integrates CNN with SNN [11]. The framework is illustrated in Figure 1. 

The CNN layers extract spatial features from the ECG data, preparing it for the SNN layers, which 

consist of LIF neurons. The LIF model has been identified through research as a capable spiking neural 

model for describing a range of biological phenomena. [12]. As computational units, LIF neurons can 

simulate both Turing machines and traditional sigmoidal networks, representing signals through delta 

functions[15], where inputs and outputs are written as 

x(t) = ∑ δ(t −  τj )
𝑛
j=1  for spike times τj (2a) 

Each unit carries out a limited range of fundamental operations—such as delaying, weighting, spatial 

summation, temporal integration, and thresholding—integrated into a unified system capable of 

performing various computational tasks, such as binary classification, adaptive feedback, and temporal 

logic. Figure 7(a) illustrates the standard LIF neuron model [13]. This neuron model has the following 

component: (1) N inputs, representing induced currents in the input synapses xj(t)x_j(t)xj(t), where each 

input is a continuous time series that may consist of spikes or continuous analog signals; (2) an internal 

membrane potential Vm(t);  (3) a single output state y(t). [14] 

Each input is weighted independently by ωj, which can be positive or negative, and delayed byτj, 

producing a time-shifted input signal[14]. These inputs are then summed spatially (pointwise), 

producing an aggregate input. This aggregate input generates an applied current between adjacent 

neurons, which can be represented as: 

Iapp(t) = ∑ ωjxj(t − τj)
N
j=1  (2b) 

In this model, the input signals are processed by applying weights and time delays, and then summed 

to form the applied current Iapp(t). This current passes through an integrator, and then through an 

activation function module, generating the output y(t). Once the neuron's membrane potential hits the 

threshold, it triggers an output and the system is subsequently reset. 

The dynamics of the network are influenced by the weights ωj  and delays τj , enabling the 

programming of a neuromorphic system. The behavior of individual neurons is determined by internal 

parameters, such as the resting potential VL  and the membrane time constant τm . The membrane 

potential Vm(t) is affected by three factors: passive current leakage, active current pumping, and 

external inputs that cause changes in membrane conductance over time. By incorporating a set of digital 

conditions, the standard LIF model for a single neuron can be derived: 
dVm(t)

dt
=

VL

τm
−  

Vm(t)

τm
+  

1

Cm
Iapp(t) 

(2c) 
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In this equation, 
dVm(t)

dt
  represents activation, 

VL

τm
 represents active pumping, 

Vm(t)

τm
 represents 

leakage, 
1

Cm
Iapp(t) represents external inputs. 

If Vm(t)  >  Vthresh, then release a pulse at tf and set Vm(t)  →  Vreset  

The behavior of an LIF neuron, as illustrated in Figure 7(b). When the membrane potential Vm(t) 

reaches or exceeds the threshold Vthresh, the neuron generates a spike, represented as y(t) =  δ(t −
tf),with tf being the time of spike firing, and Vm(t) is reset to Vthresh. A refractory period follows, 

during which Vm(t) slowly returns to the resting potential VL, making it more difficult, though not 

impossible, to fire another spike. As a result, the output of the neuron is a continuous spike series, 

expressed as y(t) =  ∑ δ(t − ti)i , where ti represents the spike times. [14] 

  

Figure 6. (a) The leaky integrate-and-fire neuron functional description. (b) A depiction of spiking 

dynamics in an LIF neuron. 

4.2.  Performance of SNN in ECG Signal Classification 

The SNN model underwent training for 10 epochs with a batch size of 16, achieving 99.39% training 

accuracy, 99.17% validation accuracy, and 97.98% test accuracy, with a test loss of 0.0932. Using Leaky 

Integrate-and-Fire neurons, the SNN outperformed the LSTM model in handling ECG signal timing 

patterns, though its higher computational complexity may affect real-time performance.  

Table 2. Training and Validation Performance of SNN Model on ECG Signal Classification 

Epoch Train_Loss Train_Accuracy Val_Loss Val_Accuracy 

1 0.2214 0.9353 0.0663 0.9844 

2 0.0937 0.9778 0.0413 0.9804 

3 0.0677 0.9837 0.0343 0.9918 

4 0.0555 0.9861 0.0358 0.9908 

5 0.0481 0.9883 0.0347 0.9912 

6 0.0438 0.9895 0.0333 0.9914 

7 0.0401 0.9902 0.0307 0.9929 

8 0.0372 0.9905 0.0255 0.9939 

9 0.0352 0.9913 0.0314 0.9923 

10 0.0331 0.9914 0.0324 0.9917 

5.  Results 

5.1.  Comparison of Classification Accuracy and Loss 

The comparison between the LSTM model before optimization and the SNN model after optimization 

shows clear improvements in both accuracy and loss. The LSTM model recorded a test accuracy of 

94.65% and a test loss of 0.1786, whereas the optimized SNN model exceeded this with a test accuracy 

of 97.98% and a significantly reduced test loss of 0.0932. These findings demonstrate the SNN model's 

superior capability to capture both spatial and temporal patterns in ECG data, resulting in more accurate 

classifications. 
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5.2.  Comparison of Confusion Matrices 

The confusion matrices further illustrate the performance improvements after optimization which is 

shown in Figure 9 and Figure 10. The optimized SNN model not only facilitated higher accuracy and 

lower loss but also demonstrated enhanced capability in distinguishing between ECG signal categories, 

especially in noisy or complex cases. This comparison underscores the effectiveness of the optimization 

in improving model performance for ECG signal classification. 

 

Figure 7. LSTM Model Confusion Matrix for ECG Signal Classification 

 

Figure 8. SNN Model Confusion Matrix for ECG Signal Classification 

6.  Conclusion 

Two ECG classification models –LSTM and SNN—were developed and evaluated in this study. Both 

performed well, with the LSTM excelling in capturing temporal dependencies but requiring more 

computational resources. The SNN, being more resource-efficient and biologically inspired, is suitable 

for low-power applications like embedded systems, though it slightly lags in accuracy due to complex 

feature extraction. While LSTM currently outperforms SNN, future research should optimize SNN 

architectures, explore hybrid models, improve training algorithms, and investigate neuromorphic 

hardware and transfer learning for better generalization. 
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