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Abstract: Federated learning is a cutting-edge distributed machine learning technique that 

lowers the possibility of data leaking from centralized uploads by enabling users to 

cooperatively train models. It not only protects client privacy but also better utilizes 

decentralized data resources, demonstrating high learning performance. To employ their 

models in the training process, however, a significant number of clients must be involved, 

which inexorably uses up the device's resources—computational power, communication 

bandwidth, and energy. Therefore, incentivizing more clients to participate in federated 

learning is crucial. Typical methods can provide numerical or model-based compensation to 

ensure they contribute their valuable model resources. This paper provides a brief 

introduction to federated learning and incentive mechanisms, and surveys related research on 

federated learning incentives. Specifically, this paper categorizes existing federated learning 

incentive mechanisms into four technical approaches: Shapley values, Stackelberg games, 

auctions, and contracts. Finally, the paper discusses some future directions for incentivizing 

clients in federated learning. 
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1. Introduction 

As a novel distributed learning paradigm, federated learning effectively addresses data privacy issues. 

During the federated learning training process, the central server first initializes a global model, 

including its initial parameters and structure, and distributes the global model and its parameters to 

the local devices or clients participating in federated learning. Each participant then uses their local 

dataset for training. After completing a certain number of local training iterations, they send the 

updated model parameters back to the central server. Upon receiving all local device model updates, 

the central server aggregates all parameters to generate new global parameters and begins the next 

round of training. This process iterates until predefined stopping conditions are met. From the above 

training process, it can be seen that federated learning significantly protects participants’ data privacy 

since there is no need to upload raw data. 

Ever since its conception, federated learning has attracted a lot of interest from the academic and 

business communities. To address the issue of non-independent and identically distributed data, 

McMahan et al. proposed the FedAvg method based on iterative model averaging [1]. The core idea 

is to upload the parameters of local models to the server, assign a weight to the model parameters 

uploaded by each device, perform a weighted average, and then broadcast this average back to all 

local devices. This process can be iterated multiple times until convergence. Federated learning 
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primarily uses gradient descent to optimize the loss function. In their work, Zheng et al. introduced 

the concept of update age to calculate how long it has been since the server last received a client's 

most recent update [2]. As a result, the global model and local data are not excessively disconnected 

from one another, which speeds up the convergence of the model. The server is able to receive 

federated learning (FL) training updates from clients in a timely manner. 

Currently, federated learning systems are very dependent on the caliber of local client updates. 

However, without appropriate compensation, clients may not continue to participate in the learning 

process. Additionally, federated learning is susceptible to attacks during training. In paper [3], Cao et 

al. found that the attack success rate is linearly related to the number of poisoned training samples 

and attackers. Malicious agents have the ability to take control of the local models of several clients, 

and malicious clients have the ability to introduce malicious data into the local model processing, 

which can eventually be used to manipulate the global model. Owing to these hazards, unless they 

obtain enough incentives, clients could be less inclined to engage in federated learning activities.  

2. Background 

2.1. Federated Learning 

Over the past few years, artificial intelligence (AI) has developed rapidly, from facial recognition and 

AlphaGo defeating human Go player Lee Sedol to autonomous driving. AI has permeated various 

aspects of our lives. However, researchers often overlook the fundamental principle of AI: it is trained 

on vast amounts of data, especially high-quality data. In reality, apart from a few giant companies, 

most enterprises face the problem of insufficient data. Therefore, the secure flow of data is an 

inevitable trend. However, data exchange also involves interest exchange, and data often appears in 

isolated silos between companies or even departments within a company. To address data silos and 

privacy protection issues, federated learning has emerged. 

In recent years, AI has advanced rapidly, from facial recognition and AlphaGo defeating human 

Go player Lee Sedol to autonomous driving. AI has permeated various aspects of our lives. However, 

researchers often overlook the fundamental principle of AI: it is trained on vast amounts of data, 

especially high-quality data. In reality, apart from a few giant companies, most enterprises face the 

problem of insufficient data. Therefore, the secure flow of data is an inevitable trend. However, data 

exchange also involves interest exchange, and data often appears in isolated silos between companies 

or even departments within a company. To address data silos and privacy protection issues, federated 

learning has emerged. 

The following describes the usual federated learning architecture and training procedure. 

Initialization is the first step. In accordance with the training job, the parameter server selects the 

global training model, pre-trains it on a public dataset, and then distributes the first model parameters 

to the chosen clients. Local Training is Step 2. Every client uses the starting settings to train on its 

local dataset. Step 3: The parameter server receives the modified model parameters. Step 4: 

Aggregation of Global Model Updates. The parameter server updates the global model with the 

averaged model after averaging the uploaded local update parameters for each round. Until a few 

predetermined requirements are satisfied, this process is repeated. 

Based on network topology, data availability, and data partitioning, federated learning can be 

categorized as follows: 

1. Network Topology-Based Classification: Federated learning has two common network 

topology types: centralized configuration based on a parameter server and decentralized configuration. 

The former divides the computing machines into two roles: parameter server and client. The 

parameter server provides model aggregation and distribution functions, while clients hold training 

data and provide the necessary computational power. The latter does not distinguish between 
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parameter servers and clients; each node has the same functionality, undertaking computational tasks 

while interacting with data from other nodes. 

2. Data Availability-Based Classification: Federated learning can be divided into cross-silo 

federated learning and cross-device federated learning based on data availability. The former refers 

to training on isolated datasets with fewer clients, where data is partitioned by samples or features. 

The latter typically involves a larger number of clients with lower reliability. 
Data Partitioning-Based Classification: Based on data partitioning, federated learning may be 

divided into three categories: vertical federated learning, horizontal federated learning, and federated 

transfer learning. Similar to horizontally dividing data in a table view, where each participant has 

separate user data but the same data characteristics, horizontal federated learning is appropriate for 

situations when each participant's datasets have the same feature space but distinct sample spaces. 

Vertical federated learning is applicable when two datasets have a high overlap of users but low 

overlap of user features. The datasets are vertically partitioned (i.e., by feature dimension), and the 

overlapping user data with different features is used for training. Federated transfer learning combines 

the concept of transfer learning to handle situations where there are only a few overlapping samples 

and features between participants’ datasets, and the datasets differ significantly in scale and 

distribution.  

2.2. Incentive mechanism 

Using certain techniques and management systems to maximize workers' dedication to the company 

and their jobs is known as an incentive mechanism. It includes the structure, procedures, connections, 

and patterns of development of interactions and limitations between the incentive object and the 

incentive subject system, which utilizes different incentive ways and standardizes them. The incentive 

mechanism serves as a bridge in order for businesses to turn ideas into tangible outcomes, aiming to 

attain a win-win outcome between both corporate and individual objectives by stimulating employees’ 

enthusiasm and creativity. However, due to the heterogeneity of devices and data in federated learning 

systems, it is challenging to effectively evaluate user contributions and dynamically adjust the system. 

This prevents the direct application of incentive mechanism designs from other fields to federated 

learning. The main issue currently faced in this field is how to design incentive mechanisms tailored 

to the unique characteristics of federated learning. 

3. Incentive mechanism in federated learning 

This section primarily classifies current incentive mechanisms from a technical perspective, including 

Shapley values, Stackelberg games, auctions, and contracts. These four incentive mechanisms all 

have significant advantages in terms of fairness. However, the applicability of federated learning 

incentive mechanisms based on Shapley values may be limited by the federated learning scenario. 

For example, in vertical federated learning, the direct application of Shapley values may be 

challenging due to the vertical partitioning of data features. Federated learning incentive mechanisms 

based on Stackelberg games allow leaders and followers to dynamically adjust their strategies 

according to each other's actions, achieving optimal resource allocation. However, there may be 

cooperation risks in practical applications. For instance, if there are trust issues or conflicts of interest 

between mobile devices or between model owners and mobile devices, the incentive mechanism may 

fail or perform poorly. Auction-based federated learning incentive mechanisms promote the efficient 

allocation of resources (such as computational resources and data resources) by allowing them to flow 

to the highest bidder or the most significant contributor through market competition. Contract-based 

federated learning incentive mechanisms clearly define the rights and obligations of participants, 

helping to establish long-term stable cooperative relationships. When formulating and executing 
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contracts, it is necessary to ensure compliance with relevant laws and regulations. In federated 

learning, this may require additional legal compliance costs and may face legal risks and disputes. 

3.1. Shapley value 

The Shapley value is a classic concept in cooperative game theory used for the fair distribution of 

cooperative gains. It defines a unique payoff scheme and is often used in machine learning to interpret 

model predictions and measure the contribution of features to the prediction results. To accurately 

assess participants' contributions to federated learning, Song et al.[4]proposed a contribution index 

based on the Shapley value, aiming to evaluate each data provider's contribution to federated learning. 

However, directly calculating the contribution index requires significant time and effort. Therefore, 

the authors approximate the reconstruction of models from different dataset combinations using 

intermediate results from the training process, avoiding additional training. 

Moreover, calculating the Shapley value in federated learning often faces two issues: first, it 

requires detailed evaluation of each data source subset's model performance, incurring high 

communication costs; second, given that the relevance of a data source may vary depending on when 

it is trained, it goes against the sequential structure of federated learning by ignoring the order in 

which the data sources are used during training. Federated Shapley Value (FSV), a variation of the 

Shapley value appropriate for federated learning, was developed by Wang et al. [5]. While capturing 

the effect of the participation order on data value and enabling computation without extra 

communication costs, FSV maintains the beneficial qualities of the standard Shapley value. 

Yang et al.[6] designed a supervised fuzzy Shapley value incentive mechanism, which successfully 

achieves fair and Pareto-efficient optimal payoff distribution. Besides computational issues, directly 

using the Shapley value can expose feature values or data sample distributions. Wang et al. [7]were 

the first to identify this threat in vertical federated learning and introduced a variant called the Shapley 

Group Value to evaluate the utility of feature subsets while avoiding the disclosure of any private 

feature information in vertical federated learning. Specifically, they integrate several private features 

into a joint feature and calculate the Shapley Group Value of this joint feature in a two-participant 

scenario. As the number of participants increases, the computation process becomes considerably 

complex. 

3.2. Stackelberg game 

Game theory can be divided into two types based on the mode of play: static games and dynamic 

games. Static games assume that all participants make decisions simultaneously, while dynamic 

games consider participants making decisions in a sequential order. In federated learning, the 

relationship between the federation and participants is typically led by the federation, with 

participants following suit. Therefore, this relationship can be modeled as a Stackelberg game. Guo 

et al. [8]utilized the Stackelberg game to design an incentive mechanism for federated learning (IMD). 

The clients follow the server, who serves as their leader. They played a game to maximize their profits 

and suggested an enhanced NSGA-II. They did this by combining NSGA-II with GA to determine 

the Stackelberg game's Nash equilibrium. The Nash equilibrium states that it can offer methods for 

the clients as well as the server. In order to encourage edge nodes to participate in model training, 

Qin et al. [9]developed an incentive mechanism for federated learning. balancing costs and training 

under a limited budget. Specifically, they modeled the utility between the server and edge nodes and 

used the Stackelberg game to obtain the optimal solution for the utility model. Considering data 

leakage issues, Yi et al.[10] preserved the differential privacy system in wireless federated learning 

and maximized server utility based on the Stackelberg game. 
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3.3. Auction 

Auction-based mechanisms, due to their simplicity, enable federations to easily obtain private 

information from participants. The auction framework known as AFL was created by Pang et al.[11]. 

It works by breaking down the social cost minimization problem into a set of Winner Determination 

Problems (WDP) that are determined by the number of global iterations. AFL uses a payment 

algorithm to compute the winners' prizes and a greedy algorithm to identify the winners in order to 

solve each WDP. Ultimately, AFL provides the best answer among all WDPs. Combinatorial Auction 

and Bargaining (CAB) is a two-stage federated learning incentive system that Xu et al.[12] devised 

to improve the overall utility of the federated learning platform and mobile users. The "Combinatorial 

Auction" stage and the "Bargaining" stage are the two stages of the mechanism. This mechanism is 

superior to other baseline mechanisms and yields higher platform profits than other mechanisms. Its 

effectiveness is supported by theoretical and numerical analysis, which also demonstrates that it is 

individually rational and incentive-compatible. The FAIR federated learning system was proposed by 

Deng et al.[13]. Reverse auctions are used as a model for the FAIR system's incentive mechanism, 

which motivates top-tier users to take part in learning. 

3.4. Contract 

Contract theory is a branch of economics that posits moral norms and political order stem from 

rational agreements or contracts. The theory asserts that individuals, in a hypothetical original state, 

voluntarily enter into contracts to constrain their behavior to achieve common interests and avoid 

conflicts. An incentive program with information asymmetry was put out by Cao et al. [14]and was 

based on the principle of a two-period dynamic contract. By balancing the model owner's weighted 

preferences for service latency and Age of Information (AoI), this strategy aims to increase the utility 

of the model owner by incentivizing additional data owners to take part in model training. Compared 

to traditional contracts and uniform pricing strategies, the model owner gains more profit from the 

proposed contract. However, existing research on federated learning incentive mechanisms only 

considers scenarios with a single task publisher and multiple worker nodes. In scenarios with multiple 

task publishers and multiple worker nodes, competition among different task publishers complicates 

the entire research process, making it impossible to directly apply contract designs from single task 

publisher scenarios. An incentive mechanism based on contract theory for multi-task publisher 

situations was presented by Xuan et al. [15]in order to overcome this problem. This mechanism can 

incentivize worker nodes to join and increase the effectiveness of federated learning. 

4. Future studies of incentive in federated learning 

Future incentive schemes should focus on enhancing the overall performance of FL at a low cost by 

attracting more participants. Firstly, the ultimate goal of any incentive mechanism is undoubtedly to 

improve FL performance. Otherwise, even if the scheme attracts more participants, it would be 

meaningless. Another crucial aspect is that the designed incentive scheme should remain lightweight, 

as resource-constrained nodes are often hesitant to engage in high-cost incentive methods. 

Researchers should place greater emphasis on cross-silo FL. The decision-making processes of 

large enterprises or organizations differ significantly from those of end-users and mobile devices, 

necessitating a novel cross-silo FL incentive mechanism. Furthermore, the widespread application of 

FL in cross-silo environments makes incentive schemes increasingly important and indispensable. 

Carefully managing the number of local epochs to regulate the number of communication rounds 

through incentive mechanisms is not only a daunting task but also a challenging one. Moreover, the 

computation and communication costs for each client in each training round may vary, further 
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complicating the design of incentive mechanisms that drive federated learning. To our knowledge, 

there are currently no research results on this topic. 

5. Conclusion 

A key component of the architecture of new federated learning systems is incentive mechanisms. The 

paper provides an in-depth analysis of current approaches and suggest avenues for further research. 

First, the paper presents the basic ideas of federated learning and incentive systems. Then, the paper 

conducts a detailed review, analysis, and comparison of solutions to emerging implementation 

challenges when creating incentive structures for federated learning. These challenges include 

Shapley values, Stackelberg games, auctions, and contracts. Finally, the paper proposes several future 

research directions, such as how to apply incentive mechanisms to cross-silo FL environments and 

how to regulate the number of communication rounds through incentive mechanisms. In summary, 

incentive mechanisms play a vital role in federated learning systems as they provide a sufficient 

number of clients for the system to function in practice. With the rapid proliferation of machine 

learning applications, developing effective and efficient incentive mechanisms for federated learning 

is a dynamic new field. The paper hopes this survey will encourage more researchers to work in this 

area. 
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