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Abstract: In recent years, spiking neural network (SNN) have attracted much attention due to 

their low energy consumption and have achieved remarkable results in the fields of vision 

and information processing. However, the application of SNNs in the field of natural 

language processing (NLP) is still relatively small. Given that current popular large-scale 

language models rely on huge arithmetic and energy consumption, it is of great practical 

importance to explore SNN-based approaches to implement NLP tasks in a more energy-

efficient way. This paper investigates the conversion method from LSTM network to SNN 

and compares the performance of the original LSTM network with the converted SNN in a 

text classification task. The paper experimentally compares the accuracy of different LSTM-

based models using different methods on the same dataset. The experimental results show 

that the converted SNN is able to achieve similar performance to the original LSTM network 

with significantly lower power consumption in text classification tasks on multiple datasets. 
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1. Introduction 

Natural Language Processing (NLP), an important part of the intersection of Artificial Intelligence 

and Linguistics, has achieved remarkable successes in tasks such as text classification as technology 

continues to advance. However, these achievements are often built on top of computationally 

intensive deep learning models, which, despite their outstanding performance, are backed by equally 

impressive energy consumption and computational resource requirements. For example, the training 

of the GPT-3 model consumed about 1,287 MWh of energy, while OpenAI runs ChatGPT at about 

564 MWh per day [1]. 

At a time when the amount of text data is proliferating, the cost of traditional deep learning models 

in terms of storage and processing has risen. Meanwhile, with the popularity of NLP applications, 

from data centres to personal devices, there is a growing demand for low-power operation. In this 

context, as an emerging neuromorphic computing model, the spiking neural network (SNN) shows 

potential for application in NLP tasks such as text classification due to its high performance and low 

power consumption characteristics in simulating the human brain in processing information.SNN 

provides new possibilities for achieving more resource-efficient text classification models by 

simulating the spiking activities of biological neurons for information processing. In addition, SNNs 
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based on conversion methods have been shown to have accuracy comparable to traditional deep 

neural networks on a variety of tasks, while performing better in terms of energy consumption [2, 3]. 

In fact, text classification tasks mainly rely on two types of deep learning models: recurrent neural 

networks (RNNs) and convolutional neural networks (CNNs.) RNNs have been widely used in text 

classification due to their advantages in processing sequential data. Long Short-Term Memory 

Network (LSTM) [4], an RNN architecture with long short-term memory units as hidden units, has 

been shown to have great potential in extracting advanced textual information. 

Currently, the application and exploration of Spiked Neural Networks (SNNs) as an efficient low-

energy computational model for text classification tasks is still in its infancy. The aim of this study is 

to explore the application of SNN based on LSTM conversion in text classification tasks and to 

evaluate whether it can maintain classification accuracy while operating at lower energy consumption 

using existing ANN to SNN conversion methods [5]. By comparing the performance of SNNs with 

that of traditional artificial neural networks, this study aims to demonstrate that SNNs based on LSTM 

conversion can not only significantly reduce energy consumption on text classification tasks, but also 

achieve comparable performance to traditional LSTMs, thus providing a more energy-efficient 

method for text classification in the field of NLP. 

2. Research method 

2.1. Data sources 

In this study, we use five text classification datasets for model performance evaluation, including 

three English datasets and two Chinese datasets. The details are as follows: 

• SST-5: A five-category version of the Stanford Sentiment Treebank containing 11,855 sentence 

samples designed for a sentiment classification task. The dataset covers five emotion categories: 

very negative, negative, neutral, positive and very positive. 

• SST-2: As a dichotomised version of the SST-5, this dataset contains only two sentiment categories: 

positive and negative. Despite the reduced number of categories, the SST-2 is still of significant 

research value in the field of sentiment analysis. 

• IMDb: This dataset consists of movie review texts divided into a training set and a test set 

containing 20,000 and 2,000 samples, respectively.The goal of the IMDb dataset is to determine 

the sentiment tendency of a review, i.e., a positive or a negative evaluation. 

• ChnSenti: This is a Chinese dataset containing about 7,000 customer reviews of hotels in China, 

each of which is labelled with positive or negative sentiment.The ChnSenti dataset provides rich 

research material for Chinese sentiment analysis. 

• TNEWS: The dataset is derived from the news section of today's headlines, covering 17 news 

categories, including travel, education, finance, military, and other fields. The size of the dataset 

is large, including 53,360 samples in the training set, 10,000 samples in the validation set, and 

10,000 samples in the test set. 

These datasets vary in size of the examples and length of the text. In the absence of a standard 

training-testing split, we randomly selected 10% of the examples from the entire dataset as the test 

set.  

2.2. Word embedding and word encoding 

In the field of Natural Language Processing (NLP), the conversion of raw textual data into numerical 

representations is a crucial step. This conversion is usually achieved by word embedding techniques, 

which map discrete text units (e.g., words, phrases) into a continuous n-dimensional space to form 
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"word vectors". These word vectors capture rich semantic information, enabling deep learning models 

to effectively process and analyse linguistic data. Pre-trained word embedding models have shown 

significant effectiveness in a variety of NLP tasks, and in this study, they also play a key role in our 

Stimulus Neural Network (SNN) model, as shown in Figure 1. 

In this study, we used the following publicly available pre-trained word embedding models to 

transform text data. For English text, we used the GloVe model pre-trained word vectors, which were 

trained based on a large-scale text corpus including the Wikipedia 2014 version and the Gigaword 5 

dataset, with a dimension of 300 for each word vector [6]. For Chinese text, we used pre-trained word 

vectors from the Word2Vec model, which were obtained by training based on text datasets from 

multiple sources including Baidu encyclopaedia, Wikipedia Chinese pages, People's Daily, Sogou 

news, financial news, and microblogging, with the same dimensionality of 300 for each word vector 

[7].  

When applying spiking neural networks (SNNs) in natural language processing tasks, the text data 

must be encoded as a sequence of spikes, but the values of the word embeddings are not always 

positive, and we use the following method [2] to convert these embeddings into non-negative vectors. 

The mean (µ) and standard deviation (σ) of the word embeddings were first calculated. Subsequently, 

the data was pruned to remove outliers and reduce the skewness of the data by restricting the 

embedding values to the mean plus or minus three times the standard deviation (μ-3σ , μ+3σ ). The 

pruned data were standardized by subtracting the mean and dividing by six times the standard 

deviation, giving the data a zero mean, and reducing the scale of the data by dividing by a larger 

multiple. Finally, to ensure that all values were non-negative and suitable for SNN processing, we 

converted the standardized values to non-negative values by restricting the maximum value to one 

and ensuring that all values did not fall below zero. This series of conversion steps not only preserves 

the semantic information of the original data, but also provides an appropriate input format for SNN. 

The specific formula is as follows: 
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where N is the number of word embeddings and Xiis the ith embedding, and μ is the mean of word 

embeddings, and σ is the standard deviation of word embeddings. 
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Figure 1: Flowchart of word embedding coding 

2.3. Neural network model customisation and training 

Despite the potential of spiking neural networks (SNNs) in modelling biological neural systems, their 

training process is limited by the available backpropagation algorithms and activation functions. To 

overcome this challenge, this study employs a conversion strategy. Specifically, we first train a 

custom artificial neural network (ANN) using a backpropagation algorithm, and then map the learned 

weights of this network into SNNs with the same topology. In constructing the customised ANN, we 

took the following steps to adapt to the characteristics of the SNN [5]. We adapted all the nonlinear 

activation functions and replaced them with modified linear units (ReLUs) except for the original 

activation function inside the LSTM layer.The ReLU function is defined as ReLU(x) = max(x, 0). In 

addition, to further simplify the model, we set all bias terms to zero. This strategy not only ensures a 

stronger correlation between the ReLU activation function in the ANN and the issuance rate of the IF 

neurons in the SNN, but also reduces the number of parameters of the model and improves the training 

efficiency. 

 

Figure 2: Architecture of customised neural network and converted spiking neural network 
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We customise LSTM-based artificial neural networks as specified. As an example, the C-LSTM 

model [8], which is suitable for text classification tasks, combines the strengths of Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory Networks (LSTMs.) CNNs are responsible 

for extracting local phrasal features in the text, whereas LSTMs further process these features to 

obtain sentence-level semantic representations. This combination enables C-LSTM to effectively 

capture both local features and global semantic information of the text. In the original C-LSTM model, 

the pooling layer after the CNN layer is omitted because the pooling operation may destroy the 

sequentiality of the features, which is detrimental to the subsequent LSTM layer. Instead, the output 

of the CNN layer (i.e., feature mapping) is directly serialised to maintain its original order and passed 

as input to the LSTM layer. In this study, we improved the C-LSTM model, including replacing the 

original nonlinear activation function with the ReLU activation function and removing bias terms in 

all convolutional and fully connected layers, as shown in Figure 2. 

In our study, we use positive word vector embeddings as inputs to the artificial neural network, 

the hidden state of the LSTM at the last time step as the representation vector of the document, and 

add a softmax layer at the end for classification. We train the whole model by minimising the cross-

entropy error through gradient descent algorithm. The loss function is defined as follows: 

 L = −
1

N
∑ ∑ yic log(𝑃𝑖𝑐)

C

c=1

N

i=1
 (6) 

where N is the total number of training samples and  y
ic

 is an indicator variable, if sample i belongs 

to category c, theny
ic

 = 1, otherwisey
ic

 =0. Pic is the probability that the model predicts that sample 

i belongs to category c. 

In this study, all network models containing a Long Short-Term Memory (LSTM) layer were 

configured with a uniform hidden layer dimension in order to maintain consistent representation 

capabilities across model variants. Specifically, the hidden layer dimension of the LSTM layer was 

set to 150.The convolutional-Long Short-Term Memory network (C-LSTM) model architecture used 

in this study contains one convolutional layer with one LSTM layer. Two different filter configuration 

schemes were explored for the configuration of the convolutional layer: 

a) Single Convolutional Layer Configuration: in this setup, we choose a filter of length 3 and the 

number of filters are all set to 150. 

b) Multiple Convolutional Layers in Parallel Configuration: in addition, we used convolutional 

layers with different filter lengths, specifically including filters of lengths 3, 4, and 5, with the number 

of filters of each length set to 150. 

For the training of spiking neural networks (SNNs), we used the SnnTorch framework. In both the 

customised artificial neural network (ANN) and the converted SNN, we used an integrated prediction 

strategy [9]. Specifically, each category was assigned 10 neurons, and the outputs of these neurons 

were integrated to obtain the final classification results. 

During the training of the custom network, we set the following hyperparameters: dropout rate of 

0.5, batch size of 32, and learning rate of 1 × 10-4. In the training and fine-tuning phase of the SNN, 

we adjusted the following parameters: time steps was set to 50, membrane potential threshold (Uthr) 

was set to 1, membrane potential decay rate (β) was set to 1, batch size was adjusted to 50, and the 

learning rate was refined to 5×10-5. 

2.4. Conversion of the model 

The ANN to SNN conversion strategy used in this study centres on reinterpreting the activation 

outputs of artificial neural networks as spike issuance frequencies, achieving a correspondence 

between the outputs of the deep learning model and the pulse frequencies of the neurons in the spiking 
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neural network. This mapping mechanism not only ensures the continuity of information transfer, but 

also improves the computational efficiency of the model on neuromorphic hardware. 

As shown in Figure 2, the conversion operation consists of the following key steps: first, a spike 

generation mechanism is introduced. This mechanism is implemented through an integrated spike 

generation module, which is responsible for generating Poisson-distributed spike trains based on the 

learnt word vectors. This generation mechanism is the basis for converting the output of the ANN 

into SNN pulse sequences. Secondly, the neuron model was updated. The neurons in the original 

network were replaced by Leaky Integrate-and-Fire (LIF) neurons with leakage properties. Then, the 

conversion of synaptic weights was performed. The weights of the convolutional and fully connected 

layers in the original network were directly mapped to the synaptic weights of the converted SNN. 

Finally, the activation mechanism was simplified. In the converted SNN, the ReLU activation 

function was omitted, and instead, the activation function was implicitly implemented by adjusting 

the threshold of the LIF neurons. 

2.5. Model Post-Processing 

In order to enhance the performance of models after conversion from artificial neural networks (ANN) 

to spiking neural networks (SNN), researchers have explored a variety of optimisation strategies. 

Diehl et al [10] provide an in-depth analysis of the conversion process, pointing out the importance 

of the parameter selection of the pulsed neurons during the conversion process, and propose a series 

of optimisation techniques to minimise the performance loss. Among them, two new weight 

normalisation methods were introduced to regulate the discharge rate, which are capable of ensuring 

low-latency classification of the converted SNN right after the first output pulse. They proposed a 

model-based normalisation approach which enhances robustness to high input rates by ensuring that 

the same neuron does not fire multiple pulses in a single time step. This strategy helps to maintain 

the stability of the SNN and improves its adaptability to input variations. In addition, they proposed 

a data-based normalisation method which uses a training set to estimate typical activation values and 

normalises the weights accordingly, with the aim of ensuring that a single pulse is generated at each 

time step. Such a treatment not only improves the classification accuracy of SNNs, but also their 

overall efficiency. Both normalisation methods can improve the performance of SNNs without 

increasing the training time compared to previous SNN methods. 

In addition, Lv et al [2] proposed a novel fine-tuning method which uses an alternative gradient 

method on the transformed SNN for further fine-tuning on the same dataset. Specifically, they 

employed the Backpropagation Through Time (BPTT) algorithm and trained the impulse neural 

network with fast sigmoid as a proxy gradient function. This technique improves the applicability and 

performance of SNNs in text classification tasks. 

3. Results and analysis 

The experimental results are detailed in Table 1, which shows the classification accuracies obtained 

by different models using different methods on the five datasets. We denote the customised original 

artificial neural network as "ANN", the SNN trained directly using alternative gradients as "SNN", 

the converted unprocessed SNN as "Conv SNN ", the model obtained by applying model-based 

normalisation to the transformed SNN is denoted as "Conv SNN+MN", the model obtained by data-

based normalisation is denoted as "Conv SNN+DN" and the fine-tuned model is denoted as "Conv 

SNN+FT". 

Table 1 shows the performance comparison of SNNs trained using the conversion method with the 

original ANNs and directly trained SNNs on five text classification datasets. On the English dataset, 

compared with the original ANN, the total average accuracy of SNNs decreases by 3.87%, in which 
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the average accuracy of "Conv SNN" decreases by 4.32%, while the average accuracy of "Conv 

SNN+FT" only decreases by 1.97%. A similar trend is observed in the Chinese dataset, where the 

total average accuracy decreases by 3.03%, with "Conv SNN+FT" showing the smallest decrease of 

1.42%. This indicates that the performance of SNN trained by the conversion method is very close to 

that of ANN. 

It is worth noting that compared with the directly trained SNNs, the SNNs trained using the 

conversion method not only greatly reduce the training time and difficulty, but also show significant 

performance improvement on both the English and Chinese datasets. The overall average accuracy 

on the English dataset is improved by 13.39%, and the "Conv SNN+FT" shows the most significant 

improvement of 15.29%. The Chinese dataset shows a similar improvement, with an overall average 

accuracy improvement of 11.81%, with "Conv SNN+FT" showing an average accuracy improvement 

of 13.42%. 

Although the accuracy of the SNN model based on LSTM conversion on various datasets fails to 

reach the level of the current state-of-the-art model, the core of this study lies in the comparative 

analysis with the original model. We observed that the accuracy of the SNN models after using 

various conversion methods did not show a significant decrease compared to the original model on 

different datasets, and all of them were maintained within an acceptable range. In addition, we find 

that the performance of the models can be further improved by applying suitable post-processing to 

them. 

Table 1: Classification accuracies obtained by different models using different methods on 5 datasets 

MODEL METHOD 
ENGLISH DATASET 

CHINESE 

DATASET 

SST-2     SST-5      imdb TNEWS   ChnSenti     

LSTM 

ANN 

SNN 

Conv SNN 

Conv SNN + MN 

Conv SNN + DN 

Conv SNN + FT 

82.15      41.62      70.05 

50.25      23.08      51.75 

76.00      38.51      65.65 

75.62      37.15      66.10 

76.51      39.05      65.72 

79.90      38.73      68.80 

56.40        84.59 

32.17        68.90 

53.01        82.92 

52.03        81.93 

54.21        82.88 

54.97        84.29 

BI-LSTM 

ANN 

SNN 

Conv SNN 

Conv SNN + MN 

Conv SNN + DN 

Conv SNN + FT 

82.59      41.86      70.20 

75.29      28.64      50.74 

76.99      38.64      59.65 

77.05      37.01      59.38 

77.10      39.59      59.28 

81.11      38.24      67.08 

57.42        85.10 

34.25        74.84 

52.90        81.94 

52.72        81.46 

54.58        82.23 

54.57        84.76 

C-LSTM 

(A) 

ANN 

SNN 

Conv SNN 

Conv SNN + MN 

Conv SNN + DN 

Conv SNN + FT 

78.86      41.81      69.50 

69.96      31.18      51.26 

76.54      37.74      65.81 

74.52      35.84      63.95 

77.38      40.72      66.09           

77.65      40.54      68.28 

54.88        82.16 

48.79        68.92 

50.31        80.13 

50.12        80.09 

51.51        80.35 

52.51        81.37 

C-LSTM 

(B) 

ANN 

SNN 

Conv SNN 

Conv SNN + MN 

Conv SNN + DN 

Conv SNN + FT 

79.90      41.13      69.47 

50.08      28.64      51.26 

77.54      37.69      66.51 

72.65      37.51      65.83 

79.29      38.51      66.32 

77.87      38.46      68.89 

54.82        83.32 

43.17        68.93 

45.24        81.93 

44.92        81.90 

49.33        81.97 

52.78        82.06 
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4. Conclusion 

This study provides a comprehensive comparison of the performance differences between the original 

LSTM networks used in a text classification task and the converted SNNs. The experimental results 

reveal an important finding: a variety of neural networks containing LSTM structures do not 

significantly degrade in performance after being converted to SNNs, but rather approach the 

performance level of the original LSTM networks on multiple datasets. In addition, we further 

observed significant performance improvements through the introduction of model post-processing 

techniques. It is worth noting that these models are achieved with significantly reduced energy 

consumption. This finding not only confirms the effectiveness of utilising a conversion approach 

when applying LSTM neural networks to text classification tasks, but also demonstrates the potential 

of this approach to maintain model performance stability across different data environments. This 

result has important implications for resource-constrained environments and energy-sensitive 

application scenarios. Given the positive results of this study, future work will explore the possibility 

of converting more complex LSTM networks to SNNs and whether such conversion can further 

reduce energy consumption while maintaining performance. 
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