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Abstract. SLAM (Simultaneous Localization and Mapping) is a technique in robotics and 

computer vision used to build a map of an unknown environment while simultaneously tracking 

the location of a robot or vehicle within that environment. The primary goal is to enable 

autonomous systems to navigate and understand their surroundings without prior knowledge of 
the environment. It has evolved significantly with the integration of diverse sensor modalities 

which initially used either a single LIDAR (light detection and ranging, or laser imaging, 

detection, and ranging) or visual sensor to perform the dual tasks of mapping an environment 

and localizing the device within it. These systems had limitations in accuracy and robustness due 

to their reliance on a single type of data input. Over time, the field has advanced to incorporate 

multiple sensor modalities, including LIDAR, visual cameras, Inertial Measurement Units 

(IMUs), ultrasonic sensors, and GPS. This multi-sensor fusion approach has dramatically 

enhanced the precision and reliability of SLAM systems. This paper reviews the state-of-the-art 

datasets that combine data from infrared cameras, depth cameras, LiDAR, and 4D millimeter-

wave radar, focusing on their contributions to advancing SLAM technologies. The study 

analyzes the advantages and limitations of each sensor type, the challenges associated with data 

fusion, and the impact on perception and mapping accuracy. This review aims to provide a 
comprehensive understanding of how these multisensor datasets enhance SLAM systems and 

highlight areas for future research. 
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1.  Introduction 

SLAM is a fundamental problem in robotics and autonomous systems, involving simultaneous 

localization and map creation. Traditionally, SLAM systems relied on single-sensor inputs, such as 
monocular cameras or LiDAR. However, the integration of multiple sensors offers richer data and 

improved performance. Recent advances have demonstrated the benefits of combining infrared cameras, 

depth cameras, LiDAR, and 4D millimeter-wave radar. For example, the review by Brown et al. 

highlights how multi-sensor fusion improves SLAM performance by combining diverse data sources to 
tackle challenges in complex environments [1]. Additionally, the incorporation of deep learning 

techniques has revolutionized visual SLAM. LeCun et al. discuss how deep neural networks can enhance 

feature extraction and data association, providing superior performance in intricate scenes [2]. 
Furthermore, real-time SLAM systems are evolving to handle large-scale environments more effectively. 

Fox et al. address the challenges and solutions related to processing vast maps and ensuring real-time 
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updates, showcasing advancements in algorithm efficiency and dynamic environment adaptation [3]. 

These developments collectively represent the cutting edge of SLAM research, driving forward its 

applicability and capabilities. 

This paper reviews datasets incorporating these modalities, assessing their impact on SLAM 
technology. Making people can understand SLAM more easily and give it an insight. 

2.  Multisensor SLAM Dataset Overview 

2.1.  Infrared Cameras 
Infrared (IR) cameras detect thermal radiation, providing critical data for low-light and night-time 

environments. IR sensors excel in differentiating heat signatures, which can enhance feature detection 

and object tracking. Recent works, such as those by Dautel and others-+, highlight the use of IR data for 

improving SLAM robustness in adverse lighting conditions[4]. 

2.2.  Depth Cameras 

Depth cameras, using structured light or time-of-flight (ToF) technology, provide precise 3D spatial 

information. This data is crucial for accurate scene reconstruction and obstacle detection. The depth data 
significantly contributes to building detailed 3D maps for the reasons as follows. They provide accurate 

distance measurements, allowing for a better understanding of object positions and spatial relationships. 

In addition, depth information helps in distinguishing objects from their backgrounds and tracking their 
movements more effectively.  

Unlike traditional cameras that rely on visible light, depth cameras often perform well in low-light 

conditions because they use depth sensors rather than just image data.4. Advanced 3D Mapping: They 

are crucial for creating detailed 3D maps, which are essential for applications like robotics, augmented 
reality, and autonomous vehicles.5. Accurate Gesture Recognition: Depth cameras enable precise 

gesture recognition by capturing three-dimensional data of hand and body movements.Works like those 

by Zhang et al. explore depth sensors for improved environmental mapping and feature extraction [5]. 

2.3.  LiDAR 

Lidar (also LIDAR, LiDAR or LADAR, an acronym for "light detection and ranging" or "laser imaging, 

detection, and ranging” [6]) is a method for determining ranges by targeting an object or a surface with 

a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a 
fixed direction (e.g., vertical) or it may scan in multiple directions, in which case it is known as lidar 

scanning or 3D laser scanning, a special combination of 3D scanning and laser scanning [7]. Lidar has 

terrestrial, airborne, and mobile applications. LiDAR systems offer high-resolution 3D point clouds by 
measuring the time of flight of laser pulses. LiDAR is known for its precision in distance measurement 

and is widely used in autonomous driving. Datasets incorporating LiDAR, such as those provided by 

the KITTI Vision Benchmark Suite, have set a benchmark for evaluating SLAM performance in real-
world scenarios [8]. 

2.4.  D Millimeter-Wave Radar 

4D millimeter-wave radar systems provide velocity and distance measurements, enhancing the detection 

capabilities under various environmental conditions. This technology is beneficial in detecting objects 
through obstructions and in poor weather conditions. Recent research, such as the work by Wang et al. 

demonstrates the use of 4D radar data in improving SLAM systems' robustness and accuracy [9]. By 

combining 4D radar data with other sensor modes, SLAM systems enable more reliable positioning and 
mapping, even in environments with limited visibility or poor weather conditions. 
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3.  Integration of Multisensor Data 

3.1.  Data Fusion Techniques 

Data fusion is critical for combining information from multiple sensors. Techniques such as Extended 

Kalman Filters (EKF), Particle Filters, and deep learning-based methods are employed to integrate data 
from different modalities effectively [10-12]. The Extended Kalman Filter (EKF) is an extension of the 

Kalman Filter designed to handle nonlinear systems. It is a recursive algorithm used to estimate the state 

of a dynamic system by processing noisy measurements. It linearizes the nonlinear system around the 
current estimate using a first-order Taylor expansion. It provides an estimate of the system's state based 

on noisy observations and a model of the system's dynamics. What’s more, EKF updates the estimate 

by correcting it with new measurements, reducing the impact of noise and improving accuracy, and 

predicts future states and updates the estimates with new data, allowing for real-time tracking and 
navigation in dynamic environments. The Particle Filter is a method that represents the posterior 

distribution of the system's state using a set of discrete samples, called particles. Each particle represents 

a possible state of the system and is associated with a weight that reflects the likelihood of that state 
given the observed data. Particle Filters can handle highly nonlinear state-space models, unlike linear 

filters such as the Kalman Filter. They are effective in situations with non-Gaussian noise and complex 

measurement models. They provide a flexible framework for estimating the state of a system over time, 
making them suitable for applications like robotics, tracking, and navigation. Deep learning-based 

methods use deep neural networks, which are composed of multiple layers of interconnected nodes 

(neurons). These networks learn hierarchical representations of data by processing input through 

successive layers, each extracting increasingly abstract features. The training process involves adjusting 
the weights of connections based on errors between predicted and actual outputs using algorithms such 

as backpropagation. Deep learning models automatically learn and extract features from raw data, 

eliminating the need for manual feature engineering. This is particularly useful for complex data types 
such as images, audio, and text. These methods are capable of achieving high accuracy in tasks like 

image classification, speech recognition, and natural language processing by leveraging large datasets 

and powerful computational resources. Deep learning can model intricate patterns and relationships in 

data, making it suitable for applications where traditional methods struggle, such as understanding the 
context in language or recognizing objects in cluttered environments and generalizing from training data 

to unseen data, enabling them to make predictions and decisions in real-world scenarios. What’s more, 

deep learning methods can be used in end-to-end learning systems, where a model learns to perform a 
task directly from raw input data to final output, streamlining the workflow and improving efficiency. 

3.2.  Calibration and Synchronization 

Accurate calibration and synchronization are essential for multisensor integration. Techniques for 
calibration include checkerboard-based methods and sensor fusion frameworks [13-14]. Calibration in 

SLAM involves determining the precise parameters of the sensors and the relationship between them. 

This includes intrinsic parameters (like focal length and lens distortion for cameras) and extrinsic 

parameters (the spatial relationship between different sensors). Synchronization ensures that data from 
different sensors, such as cameras and IMUs, are captured and processed at the same or correct time 

intervals. This is essential for the accurate fusion of sensor data and for maintaining the temporal 

integrity of the SLAM process. Accurate synchronization allows for the effective fusion of data from 
different sensors. For example, combining LIDAR data with camera images requires that both datasets 

correspond to the same moment in time to create a meaningful and accurate 3D representation. In SLAM, 

precise synchronization helps in accurately estimating the motion of the system by ensuring that sensor 
readings reflect the same state of the environment and the system at the same time. 

3.3.  Computational Complexity 

The integration of multiple sensors increases computational demands. Efficient algorithms and hardware 

accelerations are required to handle large volumes of data. Techniques such as GPU acceleration and 
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optimized data processing pipelines are employed to address these challenges [15-16]. GPU (Graphics 

Processing Unit) acceleration refers to leveraging the parallel processing power of GPUs to speed up 

computations, particularly those involving large-scale data processing and complex mathematical 

operations. GPUs can handle thousands of parallel tasks simultaneously, significantly accelerating 
computations compared to CPUs. This is especially beneficial for tasks like deep learning training, real-

time rendering, and complex simulations. For SLAM and other data-intensive applications, GPU 

acceleration enhances the processing of large datasets, such as high-resolution images or LIDAR point 
clouds, enabling faster data analysis and real-time performance. In machine learning and computer 

vision tasks, GPUs can speed up training and inference processes, allowing for more complex models 

to be used and optimized in a reasonable time frame. An optimized data processing pipeline is a 

streamlined system designed to efficiently handle and process data through various stages—ingestion, 
preprocessing, storage, analysis, and visualization. Optimization in this context involves improving the 

speed, resource usage, and accuracy of each stage to ensure that the pipeline operates effectively and 

can scale with increasing data volumes. It optimizes each stage to handle data faster, reducing overall 
processing time making better use of computational resources and minimizes delays in data handling, 

allowing for quicker insights and real-time data processing. In addition, it ensures the pipeline can 

handle growing data volumes and complexity without performance degradation, lowers operational 
costs by minimizing the need for excessive resources and improving resource utilization, and enhances 

data accuracy and reliability through effective preprocessing and cleaning, leading to more accurate 

analysis and insights and provides responsive and interactive visualizations, improving the usability and 

effectiveness of data-driven decision-making tools. 

4.  Applications and Benefits 

Multi-sensor SLAM systems improve perception by providing comprehensive environmental data. The 

convergence of different sensor types results in more accurate and reliable object detection and scene 
understanding. 

Multisensor SLAM systems improve perception capabilities by providing comprehensive 

environmental data. The fusion of different sensor types leads to more accurate and reliable object 

detection and scene understanding [17]. For example, combining vision sensors with depth sensors 
allows for more accurate object recognition and distance measurement, and combining lidar with 

millimeter-wave radar can improve the detection of occluded objects.  

The integration of diverse sensors enhances robustness to varying conditions such as poor lighting, 
weather, and occlusions. Research by Kim et al. illustrates how multisensor data improves SLAM 

performance in challenging environments [18]. In low-light environments, infrared sensors can provide 

additional information to help with positioning and mapping. In the presence of occlusions, millimeter-
wave radars can penetrate occlusions and provide more comprehensive environmental information. 

Multisensor integration leads to more accurate and detailed maps. This is crucial for applications 

requiring high-precision navigation and mapping, such as autonomous vehicles and robotic exploration 

[19]. Combining lidar with vision sensors can generate more accurate 3D maps and provide richer 
information about the environment. Using LIDAR, cameras, and other sensors to create accurate 3D 

models of landscapes and structures for applications in urban planning, construction, and environmental 

monitoring. Integrating LIDAR, cameras, IMUs, and GPS to navigate and create detailed maps of the 
environment for safe and efficient driving. 

5.  Conclusion 

The article reviews the current state of multisensor SLAM (Simultaneous Localization and Mapping) 
datasets, which combine data from infrared cameras, depth cameras, LiDAR, and 4D millimeter-wave 

radar. It examines how these diverse sensor modalities contribute to advancing SLAM technologies. 

The integration of data from infrared cameras, depth cameras, LiDAR, and 4D millimeter-wave radar 

represents a significant advancement in SLAM technology. Multisensor SLAM datasets offer enhanced 
perception, robustness, and mapping accuracy. This research still has several shortcomings, such as a 
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lack of experiments and data. The author will do much more research to polish it. Future research will 

continue to refine data fusion techniques, address computational challenges, and explore novel 

applications for these advanced sensor systems. 
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