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Abstract. The field of Natural Language Processing (NLP) has seen remarkable advancements 

with the development of large pre-trained language models, which excel in various tasks, 

especially through in-context learning. However, the increasing size of these models presents 
significant challenges for widespread deployment, particularly in resource-constrained 

environments. This study introduces Context-Optimized Soft Prompts (COSP), a new approach 

that can improve the performance of smaller language models in few-shots learning scenarios. 

COSP uses information from the presentation to initialize soft prompts, effectively addressing 

the limitations of smaller models when performing contextual learning. COSP is evaluated on 

multiple tasks in the SuperGLUE benchmark and showed significant performance improvements. 

Results show that COSP not only enhances model performance but also generates more diverse 

and evenly distributed soft prompts, contributing to robust and generalizable model behavior. 

Additionally, COSP accelerates the training process, potentially reducing computational 

resources for model adaptation. By enabling smaller models to perform complex tasks 

competitively, COSP opens up new possibilities for deploying complex language understanding 

techniques in resource-constrained environments. 
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1.  Introduction 

The evolution of natural language processing (NLP) has been significantly driven by large pre-trained 

language models (PLMs), which excel in a variety of tasks. Traditionally, fine-tuning these models for 
specific tasks has been the standard approach to achieving top performance. However, the extensive 

computational demands of fine-tuning, especially for large models, have led researchers to explore more 

efficient alternatives. Among these, prompt tuning has emerged as a promising method, enabling the use 

of PLMs with minimal task-specific adjustments [1-4]. 
Soft prompts have become a research hotspot because of their flexibility and efficiency. Soft prompts 

are continuous, learnable representations of vectors that guide the behavior of the model by optimizing 

those vectors without changing the parameters of the original model. Research in this area has explored 
various methods, starting with prefix-tuning [2], which involves adding trainable tokens to the input 

sequence, demonstrating efficient task adaptation with reduced fine-tuning requirements. Besides, P-

Tuning [3] and its advanced version, P-Tuning v2 [4], add continuous prompts at different locations in 
the model, achieving results comparable to or even exceeding fine-tuning on natural language 

understanding (NLU) tasks. [5] extends this concept to few-shot learning, showing that prompt tuning 
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can achieve competitive performance with minimal data. Additionally, researchers delve into the 

underlying mechanisms, exploring how prompts interact with the model’s different components, 

contributing to the overall understanding of prompt tuning [6-8]. 
Large models, such as GPT-3, have demonstrated remarkable capabilities in various NLP tasks, 

particularly through In-context Learning (ICL), where they can adapt to new tasks without fine-tuning 

the parameters in the model. However, the exceptional performance of these models comes at a 
significant cost: this ability only emerges when the parameters come to a large number [9], thus requiring 

immense computational resources for inference, making them impractical for many pragmatic 

applications. This significant performance disparity between large and small models highlights the 

pressing need to enhance the capabilities of small language models to bridge this performance gap. 
Inspired by in-context learning, this study introduces Context-Optimized Soft Prompts (COSP), a 

new approach designed to enhance the performance of smaller language models by leveraging 

information from demonstrations. By doing so, the approach addresses the limitations of small models 
in performing context learning, bridging the gap between the ICL capabilities of large language models 

and the practical constraints of deploying small models across a variety of NLP tasks in a way of few-

shots learning. Through comprehensive experiments on the SuperGLUE benchmark dataset, it is 
demonstrated that COSP significantly improves the performance of smaller models, especially in few-

shots learning scenarios. In addition, the analysis of experimental data shows that this method can obtain 

more soft prompts and accelerate the convergence process of training.  

2.  Methods 

2.1.  Intuition and Empirical Preliminaries 

In-context learning has emerged as a powerful paradigm in natural language processing, demonstrating 

remarkable capabilities in task adaptation without the need for parameter updates. However, this ability 
is predominantly observed in large language models such as GPT-3 or even larger models [9]. The 

effectiveness of ICL appears to be closely tied to model scale, with smaller models often struggling to 

exhibit comparable in-context learning abilities. This scale dependency of ICL presents a significant 

challenge in deploying these capabilities in resource-limited environments that require more efficient 
models.  

Soft prompts offer a promising avenue to address this challenge. Unlike traditional discrete prompts, 

soft prompts provide a mechanism to learn continuous representations that can capture latent semantic 
information from task-specific examples. These learned representations can potentially guide smaller 

models in a manner similar to how large models utilize in-context examples. In this way, smaller models 

are provided with a form of "compressed knowledge" that is tailored to the specific task at hand. 
The methodology in this study is grounded in recent advancements in the understanding of soft 

prompts and ICL for PLMs. A novel perspective posits that prompts essentially stimulate the distributed 

capabilities among neurons within PLMs [10]. Another interesting research conceptualizes of ICL as a 

form of higher-level fine-tuning [11]. Building upon these insights, this study proposes a novel method 
that leverages information from demonstrations to initialize soft prompts. The approach aims to capture 

and distill task-specific information embedded in these demonstrations, transforming it into effective 

soft prompts. By doing so, this method addresses the limitation of smaller models in performing in-
context learning (ICL), bridging the gap between the ICL capabilities of large language models and the 

practical constraints of deploying smaller models in various NLP tasks. 

2.2.  Context-Optimized Soft Prompts 
The key innovation of this approach lies in its ability to harness the implicit knowledge contained in in-

context examples to create more effective soft prompts. Formally, let ℳ𝜓 be a pre-trained language 

model with a vocabulary size of |𝒱| and parameters 𝜓. Let {(𝐱𝑖 , 𝐲𝑖)}𝑖 be a labeled dataset for an NLU 

task, where 𝐱0:𝑛 = {𝐱0, 𝐱1 , … , 𝐱𝑛} is an input consisting of a sequence of discrete tokens, and 𝐲𝑖 ∈ 𝕐 

is the corresponding label. The goal is to estimate the conditional probability for classification 𝑓ℳ(𝑥) =
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𝑝(𝑦̂|𝑥) with most of the parameters of ℳ𝜓 froze and the additional parameters finetuned. In the COSP 

framework, an encoder 𝐸𝜃  (LSTM or MLP) with parameters 𝜃 that processes a set of m few-shots 

learning examples {(𝐱𝑐 , 𝐲𝑐)}𝑚  is introduced to extract features in the demonstrations. The encoder 

outputs a feature representation: 𝒉𝑐 = 𝐸({(𝐱𝑐 , 𝐲𝑐)}𝑚) . 

Then these encoded features 𝒉𝑐 are added as a prefix to the input embeddings. The COSP template 

is thus: 𝑻COSP = {𝒉𝑐}. The final input to the pre-trained language model is a sequence of embeddings: 

𝐸𝑚𝑏 = {𝑻COSP , 𝒆(𝒙𝟎), 𝒆(𝒙𝟏), … , 𝒆(𝒙𝒏)} , where 𝐞 ∈ ℝ|V|×d  is the embedding function of the pre-

trained model.  

During training, the parameters of the embeddings are optimized to minimize a task-specific loss 

function ℒ: 

 min𝐸𝑚𝑏    ℒ(𝑓ℳ (𝑻COSP, 𝐱), 𝐲) (1) 

This design allows COSP to directly utilize features extracted from in-context learning examples as 

a continuous prompt prefix. By placing these features at the beginning of the input sequence, COSP 

potentially improves performance even for smaller models where traditional in-context learning might 
not be effective. The absence of discrete prompts simplifies the approach and allows the model to rely 

entirely on the learned continuous representations from in-context examples. 

3.  Results 

3.1.  Datasets and Metrics 

To evaluate the effectiveness of COSP, experiments are conducted on the SuperGLUE benchmark [12]. 

SuperGLUE is a comprehensive suite of challenging NLU tasks consisting of eight diverse tasks that 

cover a wide range of linguistic phenomena and reasoning capabilities, from simple classification to 
complex reasoning tasks. 

Specifically, three tasks: BoolQ, RTE, and WiC are selected in this study because previous methods 

[3] often don't perform as well on these subsets as other subsets. BoolQ [13] is a question answering 
task that tests a model's ability to understand yes-or-no questions in context. The Recognizing Textual 

Entailment (RTE) task challenges models to determine whether a given hypothesis can be inferred from 

a provided text. Word-in-Context (WiC) [14] evaluates a model's capacity to identify the meaning of 

polysemous words in different contexts. 
To assess performance across these diverse tasks, accuracy is employed as the evaluation metric for 

all three tasks. Following the standard practice in related works, the average scores across all tasks as 

the overall scores are also listed. 

3.2.  Configuration 

To evaluate the effectiveness of whether small models could learn patterns from the given context, the 

COSP method is mainly implemented on BERT model. Comparison methods include Fine-tuning and 
P-Tuning [1]. Since this method does not add additional parameters to each layer of the model, P-Tuning 

v2 is not selected for comparison. Regarding the ICL sample template format, this study follows the 

design of [15]. Specifically, the AdamW optimizer was used, and a batch size of {16, 32} and a learning 

rate of {2e-5, 1e-5, 5e-6}, accompanied by a learning rate decay technique, were used for training. A 
total of 5-20 epochs were trained, depending on the different sizes of datasets. 

3.3.  Results and Analysis 

In this subsection, experimental data for the COSP method and the comparison method on several 
subsets of SuperGLUE are presented. At the same time, some soft prompts obtained by using COSP 

method are analyzed, trying to explain the reason why this method gets better performance. 

3.3.1.  Results. Table 1 presents the performances of COSP and comparing methods on the selected 
subsets of SuperGLUE benchmark. As can be seen from the table, COSP performs best on BoolQ and 
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RTE, while is closer to the finetuning results on WiC. It can be observed that the performance 

improvement of COSP on datasets with a large amount of data is not as good as fine-tuning, but the 

improvement on datasets with limited training data is greater. After calculating the average metrics, the 
COSP method also outperforms the other methods considered. 

Table 1. Results on SuperGLUE benchmark. (bold: the best; underline: the second best) 

 Method BoolQ RTE WiC Avg. 

BERT-
Base 

Fine-Tuning 72.9 68.4 71.1 70.8 

P-Tuning 73.9 71.1 68.8 71.3 

COSP 74.9 71.8 70.3 72.3 

BERT-
Large 

Fine-Tuning 77.7 74.8 74.9 75.8 

P-Tuning 77.2 74.4 72.7 74.8 

COSP 78.4 75.3 74.0 75.9 

3.3.2.  Visualization. Figure 1 shows the t-SNE visualizations of soft prompts, representing prompt 

distributions for the proposed method (left) and the random-initialized P-Tuning [6] (right), respectively. 

COSP shows a more decentralized clustering structure. These clusters vary in size and shape and are 
distributed throughout the two-dimensional space. In contrast, the random method also shows a certain 

clustering trend, but the boundaries between clusters are more separated. This feature implies that COSP 

can generate more diverse and differentiated prompts. This difference suggests that the proposed 
approach may better capture the continuous semantic meanings rather than extracting discrete prompts. 

The more concentrated distribution on the right may indicate that the P-Tuning method is not taking full 

advantage of continuity even when continuous representations are used. In contrast, COSP seems to 
make better use of the properties of continuous representation. 

Moreover, the clusters in the left picture come in a variety of shapes and sizes, from tight ovals to 

loose irregular shapes. The cluster shape in the right picture is relatively uniform, with a flat oval or 

circle, which may mean that prompt expression ability is limited. The rich expressiveness of continuous 
prompts may indicate that the method proposed in this study can produce more diverse and structured 

distributions, exploring more possible representations in continuous space. 

 

Figure 1. Visualization of soft prompts. The one on the left is COSP and the one on the right is random 

initialization. 

3.3.3.  Optimization process. Figure 2 shows the loss changes of two methods, random-initialized P-

Tuning and COSP, in the early part of training process. The data from this training phase provided us 
with important insights into the performance characteristics of both methods. From the experimental 

results, COSP not only shows superior performance, but also provides us with a new perspective to 

understand the model optimization process. 
First of all, it is obvious from the training curve that COSP shows a faster convergence rate than P-

Tuning at the early stage of training. Whether it is training losses or validation losses, COSP is able to 

achieve lower levels in fewer training steps. This phenomenon not only shows that COSP can find a 
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good parameter space faster, but also suggests that it may have higher parametric efficiency. More 

notably, COSP's validation losses are consistently lower than P-Tuning's, which is particularly important, 

showing that COSP is also better able to generalize to previously unseen data. Another noteworthy 
phenomenon is the smoothness of the COSP training curve. Compared with P-Tuning, the loss curve of 

COSP oscillates less and shows a more stable downward trend. From another perspective, COSP can be 

seen as a more efficient approach to soft prompts initialization. Previous methods usually rely on random 
initialization, class labels or sampled vocabulary. COSP, on the other hand, provides a task-specific, 

more informative starting point. This initial point brings the model closer to the optimal solution for the 

target task from the start, speeding up the convergence process and improving the final performance.  

 

Figure 2. The loss figure of random-initialized P-tuning and COSP. 

4.  Discussion 

While both COSP and P-Tuning use continuous prompts, COSP is more similar to prefix-tuning by 

setting the positions of prompts to prefixes, rather than involving different positions in the sequence as 
in p-tuning. This is also in line with the intuition of ICL to give the model a hint in advance. However, 

in terms of the choice of updatable parameters, COSP is different from prefix-tuning and P-Tuning v2 

but more similar to P-Tuning, selecting the input embedding layer as the update part of the model, in 
order to catch up with the effect of fully fine-tuning with less training overhead. 

The success of COSP has important implications for the popularization of large language modeling 

technologies, making advanced capabilities more accessible in resource-constrained environments. It 

provides an efficient way to adapt smaller models to new tasks without requiring extensive fine-tuning 
or the computational resources required for ICL in larger models. There are limitations, however. 

Further research is needed to explore optimizing presentation design and investigate the effectiveness 

of COSP in different model architectures. Future work could focus on applying COSP to multitasking 
learning, combining it with other cue engineering techniques. Going forward, if better performance is 

desired, trainable parameters can be extended to each layer of the model or to specific layers to increase 

the deep learning ability for specific tasks. 

5.  Conclusion 

In this paper, a new method Context-Optimized Soft Prompts (COSP) that extract features from text 

demonstrations in the format of continuous prompts is presented. Overall, COSP not only improves the 

performance of small models, such as BERT, on natural language understanding tasks, but also 
accelerates and stabilizes the convergence process of prompt tuning. COSP effectively addresses the 

limitation of smaller models in performing in-context learning, particularly in few-shot learning 

scenarios. While there are areas for further investigation, including scalability and theoretical 
understanding of the method, COSP represents a significant step towards more accessible parameter-

efficient fine-tuning solutions.  
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